United States Patent

US009456050B1

(12) (10) Patent No.: US 9,456,050 B1
Lepeska et al. 45) Date of Patent: Sep. 27,2016
(54) BROWSER OPTIMIZATION THROUGH 6,085,193 A 7/2000 Malkin et al.
USER HISTORY ANALYSIS 6,085,226 A 7/2000 Horvitz
6,178,461 Bl 1/2001 Chan_et al.
(75) Inventors: Peter Lepeska, Boston, MA (US); g’ég%’égz g} éggg} IS{:er;EiZan
William B. Sebastian, Falmouth, MA 6:339:787 Bl 1/2002 Yohe et al.
us) 6,578,073 Bl 6/2003 Starnes et al.
6,701,316 Bl 3/2004 Li et al.
(73) Assignee: ViaSat, Inc., Carlsbad, CA (US) 6,879,808 Bl 4/2005 Nations et al.
6,993,591 Bl 1/2006 Klemm
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 1054 days. FOREIGN PATENT DOCUMENTS
) WO WO-01/61886 A2 8/2001
(21) Appl. No.: 13/372,397 WO WO-01/84777 A2 11/2001
(22) Filed: Feb. 13, 2012 (Continued)
OTHER PUBLICATIONS
Related U.S. Application Data)) o
Non-Final Office Action mailed in U.S. Appl. No. 13/372,347 on
(60) Provisional application No. 61/442,119, filed on Feb. Feb. 10, 2014, 24 pgs.
11, 2011, provisional application No. 61/550,296, (Continued)
filed on Oct. 21, 2011.
(51) Int.Cl Primary Examiner — Richard G Keehn
GOGF 15/16 (2006.01) (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
HO4L 29/08 (2006.01) Stockton LLP
(52) US. L (57) ABSTRACT
CPC ... HO4L 67/2847 (2013.01); HO4L 67/02 . .
(2013.01); HO4L 67/22 (2013.01) The present invention relates to systems, apparatus, and
(58) Field of Classification Se ar’ch methods of using real user history data to improve prefetch-
USPC 709/201 ing for a web page transaction. In one potential embodiment
< lication file f let h history. a method includes a proxy server observing a first web page
c¢ apprication e Jor cotipiete search stoty transaction that has a first root HTTP request, a first root
(56) References Cited HTTPresponse, at least one child HTTP request, and at least

U.S. PATENT DOCUMENTS

5408470 A 4/1995 Rothrock et al.

5,727,129 A * 3/1998 Barrett et al. 706/10
5,740,367 A 4/1998 Spilo

5,870,754 A 2/1999 Dimitrova et al.

5,878,223 A * 3/1999 Becker et al. 709/223
5,905,981 A 5/1999 Lawler

one child HTTP response. The server may then extract a
parameter from the web page transaction and correlating the
parameter with the child HTTP request. In a later web page
transaction, the parameter may be used to predict the child
HTTP being requested even when the web page transactions
are different.

25 Claims, 19 Drawing Sheets

Praxy server observes a first root HTTP request]
g180 | fromaclient to a content server and a subsequent
root HTTP response from the content server to the
dlient.
1 First
Web
§182 | Proxy server scans the first HTTP request and the Page
subsequent HTTP response to identify parameters. T g
184 | Prowy server observes a following chiid HTTP
request and child HTTP response associated with
the first HTTP request and response.
Proxy server analyzes the parameters and the child
$186 | HTTP request and response to identify a potential
correlation
Proxy server observes a second oot HTTP request
5188 | from a client to @ content server and a subsequent
root HTTP response from the content server to the
client. Second
Web
Page

Proxy server scans the second root HTTP request

8180 | and the subsequent HTTP response to identify

parameters.

Praxy sarver prefetches objects expected as child
HTTP requests and responses to the second raot
HTTP request and response based on a previously
identified correlation between a parameter of the.
second oot HTTP requestand the child object.

5192

Transaction

US 9,456,050 B1
Page 2

(56)

7,124,305
7,130,890
7,340,510
7,359,956
7,430,331
7,509,667
7,636,767
7,680,897
7,681,032
7,716,367
7,778,438
7,814,149
7,836,177
7,917,531
7,941,409
7,941,609
7,953,881
7,975,019
7,975,071
8,041,677
8,055,616
8,082,228
8,151,004
8,230,059
8,230,461
8,284,773
8,327,440
8,335,838
8,812,648
9,037,638
9,106,607
2001/0016836
2001/0043600
2001/0051927
2002/0006116
2002/0010761
2002/0026478
2002/0154887
2002/0188735
2002/0194473
2003/0018581
2003/0105833
2003/0120658
2004/0205149
2005/0010870
2005/0015442
2005/0027820
2005/0033747
2005/0044242
2005/0131903
2006/0047804
2006/0101514
2006/0112264
2006/0184960
2006/0253444
2006/0277257
2006/0288072
2006/0294223
2007/0033408
2007/0101074
2007/0111713
2007/0116151
2007/0133554
2007/0143484
2007/0156845
2007/0174246
2007/0220303

References Cited

U.S. PATENT DOCUMENTS

B2
Bl
Bl
B2
B2
Bl
B2
Bl
B2
Bl
B2
Bl
B2
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
Bl
Bl
Bl
Bl
B2
B2
B2
Bl
Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

*

10/2006
10/2006
3/2008
4/2008
9/2008
3/2009
12/2009
3/2010
3/2010
5/2010
8/2010
10/2010
11/2010
3/2011
5/2011
5/2011
5/2011
7/2011
7/2011
10/2011
112011
12/2011
4/2012
7/2012
7/2012
10/2012
12/2012
12/2012
8/2014
5/2015
8/2015
8/2001
11/2001
12/2001
1/2002
1/2002
2/2002
10/2002
12/2002
12/2002
1/2003
6/2003
6/2003
10/2004
1/2005
1/2005
2/2005
2/2005
2/2005
6/2005
3/2006
5/2006
5/2006
8/2006
11/2006
12/2006
12/2006
12/2006
2/2007
5/2007
5/2007
5/2007
6/2007
6/2007
7/2007
7/2007
9/2007

Margolus et al.
Kumar et al.
Liskov et al.
Kanai et al.
Singh

Cook

Lev-Ran et al.
Carter

Peled et al.
Leighton et al.
Malone
Stringham
Kasriel et al.
Sakurai

Mimatsu

Almog
Vadlakonda et al.
Green et al.
Ramjee et al.
Sumner et al.
Johnston et al.
Mu

Ufimtsev et al.
Santos et al.
Ledermann et al.
Woleben et al.
Milener et al.
Zhang et al.
Subramanian et al.
Lepeska et al.
Lepeska HO04L 67/2847
Boccon-Gibod
Chatterjee et al.
London et al.
Burkhart

Carneal et al.
Rodgers et al.
Tu

Needham et al.
Pope

Bratton

Daniels et al.
Carneal et al.
Dillon et al.

Gu et al.
O’Laughlen et al. 709/203
O’Laughlen et al. 709/217
Wittkotter
Stevens et al.
Margolus et al.
Fredricksen et al. 709/224
Milener et al.
Agarwal

Horton et al.
O’Toole et al.
Kromann et al.
Knapp et al.
Glasgow et al.
Morten

Patterson
Silverbrook et al.
Thesling

Ederer et al.
Drouet
Devanneaux et al.
Sigurdsson
Kimura et al.

2007/0226320 Al 9/2007 Hager et al.

2007/0256021 Al 11/2007 Prager et al.

2007/0260653 Al 11/2007 Jaffri et al.

2007/0288518 Al 12/2007 Crigler et al.

2008/0005086 Al 1/2008 Moore

2008/0066182 Al 3/2008 Hickmott et al.

2008/0082509 Al 4/2008 Bessieres et al.

2008/0115125 Al 5/2008 Stafford et al.

2008/0144713 Al 6/2008 Kimmich et al.

2008/0155614 Al 6/2008 Cooper et al.

2008/0175239 Al 7/2008 Sistanizadeh et al.

2008/0201331 Al 8/2008 Eriksen et al.

2008/0201332 Al* 82008 Souders GOGF 17/30867
2008/0205396 Al 8/2008 Dakshinamoorthy et al.
2008/0235594 Al 9/2008 Bhumkar et al.

2008/0235739 Al 9/2008 Coebergh Van Den Braak
2008/0256138 Al 10/2008 Sim-Tang

2008/0263130 Al 10/2008 Michalowitz et al.
2009/0006368 Al 1/2009 Mei et al.

2009/0037393 Al 2/2009 Fredricksen

2009/0047937 Al* 2/2009 Zellner et al. 455/414.1
2009/0049469 Al 2/2009 Small et al.

2009/0055471 Al 2/2009 Kozat et al.

2009/0055862 Al 2/2009 Knoller et al.

2009/0060086 Al 3/2009 Kimmich et al.

2009/0100228 Al 4/2009 Lepeska et al.

2009/0158318 Al 6/2009 Levy

2009/0168795 Al 7/2009 Segel

2009/0187673 Al 7/2009 Ramjee et al.

2009/0234809 Al 9/2009 Bluger et al.

2009/0313329 Al 12/2009 Agrawal et al.

2010/0017696 Al 1/2010 Choudhary et al.

2010/0058430 Al 3/2010 Jones et al.

2010/0083322 Al 4/2010 Rouse

2010/0169262 Al 7/2010 Kenedy et al. 706/50
2010/0169313 Al 7/2010 Kenedy et al. 707/736
2010/0177642 Al 7/2010 Sebastian et al.

2010/0179984 Al 7/2010 Sebastian

2010/0179986 Al 7/2010 Sebastian et al.

2010/0179987 Al 7/2010 Sebastian et al.

2010/0180046 Al 7/2010 Sebastian et al.

2010/0185730 Al 7/2010 Sebastian

2010/0191856 Al* 7/2010 Gupta et al. 709/228
2010/0232431 Al 9/2010 Sebastian

2011/0029641 Al 2/2011 Fainberg et al.

2011/0270959 Al 11/2011 Schlusser et al.

2012/0060121 Al 3/2012 Goldberg et al.

2012/0136926 Al 5/2012 Dillon

2012/0185505 Al 7/2012 Borden et al.

* %

FOREIGN PATENT DOCUMENTS

WO WO-02/41527 Al 5/2002
WO WO-2007/051079 A2 5/2007
WO WO-2008/070614 A2 6/2008

OTHER PUBLICATIONS

Frantzeskou et al., “Effective Identification of Source Code Authors
Using Byte-Level Information,” ICSE ’06, May 20-28, 2006,
Shanghai, China, ACM 1-59593-085-X/06/0005,XP040040085, pp.
893-896.

Paul et al., “Distributed caching with centralized control,” Com-
puter Communications, vol. 24, Issue 2, Feb. 1, 2001, pp. 256-268.
Selvakumar et al., “Implementation and comparison of distributed
caching schemes,” Computer Communications, vol. 24, Issues 7-8,
Apr. 1, 2001, pp. 677-684.

* cited by examiner

US 9,456,050 B1

Sheet 1 of 19

Sep. 27, 2016

U.S. Patent

0S| Jonlag Jusiuo)n

Gcl

Vi Old

00L \

0zl Janieg Axold

Gl

P S

GOl slD

0Ll usid
Axolid

US 9,456,050 B1

Sheet 2 of 19

Sep. 27, 2016

U.S. Patent

SNEINEISSVE)

40¢] SNBSS JUSJUOD

BOC | JONIBS JUSIU0)

Gel

dl 9ld

o021
Janas Axold

y

qocl
Janieg Axold

e0ZL
Janeg Axold

SLl

9601 WLNO

20L1
Ll Axold

qGol WLlD

a0l
aln Axold

BG0lL WaO

eglLl
LD Axold

US 9,456,050 B1

Sheet 3 of 19

Sep. 27, 2016

U.S. Patent

30S| JeAIasg JuUsjuoD

Ol old

dogl J1oAleg 1Usluod

B0C| JoAag Jualuor)

RANEISELS
sisAjeuy yowald

Y

qo0cl
Janieg Axold

eozl
Janeg Axolid

Gl

0G0L LD

o011
w10 Axoud

qGol wSlo

qoLl
el Axoud

BGOL JUalD

0Ll
elD Axold

U.S. Patent Sep. 27, 2016 Sheet 4 of 19

5180

5182

5184

S186

5188

S190

S192

Proxy server observes a first root HTTP request
from a client to a content server and a subsequent
root HTTP response from the content server to the
client.

US 9,456,050 B1

A 4

Proxy server scans the first HTTP request and the
subsequent HTTP response {o identify parameters.

y

Proxy server observes a following child HTTP
request and child HTTP response associated with
the first HTTP request and response.

A 4

Proxy server analyzes the parameters and the child
HTTP request and response to identify a potential
correlation.

\ 4

First

Web

Page
Transaction

Proxy server observes a second root HTTP request
from a client to a content server and a subsequent
root HTTP response from the content server to the
client.

y

Proxy server scans the second root HTTP request
and the subsequent HTTP response to identify
parameters.

A

Proxy server prefetches objects expected as child
HTTP requests and responses to the second root
HTTP request and response based on a previously
identified correlation between a parameter of the
second root HTTP request and the child object.

FIG. 1D

Second
Web

Page
Transaction

US 9,456,050 B1

Sheet 5 of 19

Sep. 27, 2016

U.S. Patent

Link

N/
LO)|
ol

J9zZIsayiuAs
Fczisenbay

\

ISPOIN
762 800H

3

0S¢ |[apoly
ayoe) 1D

+

Bupoes|
uolpesuel |
JaM

ZCZ JONIBg AXOid

IVC Jsuuedg
yoleseld

¥
Josied
asuodsay

Bt

Transmission and Protocol Module

ayoen

¢ 9ld
00¢
212 waN) Axoud o1e
] — — — - NDWBID
744
ELT44 m Jabeuepy
g asuodsay Z0C wiaisAg 1980
= M,
g B A
o)
0£¢C 8 Y 0 —

~ = [i[44 » X o 90t

= b 3 S -

3 a 1eBeuepy £ B lasmoug g9
° yoleseld 3 L 8 dom
= o T |
S 4 g
5 \ /] A
& . \ Y
£ 91¢ ¥0C
@ Jesied ayoen
© 1senbay M| iesmolg
— s

s
A 7
s
Y P
Ew_mN_E_EO

US 9,456,050 B1

Sheet 6 of 19

Sep. 27, 2016

U.S. Patent

/

NIOMIBN

V¢ 'Old
| w e m 0z
: apo : : : WR)sAG I19AID
i | 1ear9g a8py mﬂm%ow\é : : H 184S S
: aanden S ! : ;
: : pareys : : H
m N\ N\ w w m vie
: gze vee m PR < / wﬁm
wnn-...- -cn..nn-nu:.c..-z%m ||||||||||||||||||||| M w M ®~5ﬂu02 .H&\/-me
NNm\ S[NPON ; m S[Npo odeyg || 2°P8
»{ O[PS {gpi : I07RIB[E0Y Uil Ayreg
; opIG-1941aG . -pInyL,
w N +n+ ﬁ»
v m m 91¢
¢ ' ' o ampo
PO SNpPoON : : wum m%m <
P»| IOAIODSURI] (€—P| UODRUIUMIS], ! SO[npolN ig 5 N om g
APIG-19AIG WOPON i 10ddng .A 7| HOMeN
S N S T < 2\
0be 0ee qee 9%¢ 0re
STl
Sl v
(s)1aa1ag 1om15
JUBIUOD) PHOMIN
0ce S
0¢T

US 9,456,050 B1

Sheet 7 of 19

Sep. 27, 2016

U.S. Patent

a68¢ 268€ ge ‘old
i snpopN | i ompow |
i a8eroig . HEES <o (o ST
papusixy _ papuaixg “.
........ A agge T K egge
..... » f
[euIuIa],
R 1980
S v m
{ znundo | q/3E o(NpOo 3MPOJN 38e103G JUBID N 3INPOIA :
w U3 “ mwmhoum UL r " 10JRI3[30Y [RUIULID], ;
bemevenennnanas i ©L8¢ AN m
998 7 Poose 06¢ 08¢ .
ampon SMpPOnN : // { AN Y :
10883001] 103eIS[RIOY i : AN
WD LI m SIPON m
T smpopy anpopy | Bussecoag || PPN
q09¢ adD : Sunnoy < > OVIN -oid] oeIsEL 1<
- : ’ < : [eurua),
w z6¢ m
Y JuRlD] SaNpPOoJA uissanoi] eye(] ;
w1 < T e !
209¢
209¢ SLIN
NI0MIBN

Bin
Template
List

413

Children

414

U.S. Patent

Sep. 27, 2016

P

Root Request
420

Generate Root
Template

421

Get Bin
Templates 422

Get Children for
Each Bin

423

Child
Dynamic
Field Models
416

4

A4

Generate
Dynamic
Child Fields

425

A 4

Get Child
Consequentiality
426

Root Response
428

Sheet 8 of 19 US 9,456,050 B1

S~
URL: http::\netflix.com/Movie/Grownups/70125321?trkid=135437
Header: UserAgent=MSIE 7.0; acceptGzip=true, etc.
Cookies: NetfiixSession=139.743d1d11-08b8-4727; etc.

HostName = netflix.com
URL Template = Folder1 + Folder2 + FileName + Name="trkid”

Cookies: “netflixSession”

1

Bin 1: folder1=Movie;
Bin 2: folder1=Movie; folder2=Grownups;
Bin 3: folder1=Movie; UserAgent=MSIE 7.0

N\

For Bin 1:
child1= www.netflix.com/Default?tcw=MASK:Cookie:NetflixSession
child2= ...

AN

For Bin 1:
child1= www.netflix.com/Default?tcw=139.743d1d11-08b8-4727
child2= ...

L

For Bin 1:
child1= field “tcw” inconsequential; all others consequential
child2= ...

FIG. 4

U.S. Patent

Child

Consequence
515

Sep. 27, 2016

501
Root Update

———

y

~_

Update child 519
consequence model

Child Dynamic
Field Model

525

Update child 520
origin model

r

Update Recognized
children 530

Bin Children
535

Bin Template
List 545

y

Update Unrecognized
Children 540

Update Bin
Template List

540
Store iog data

FIG. 5

Sheet 9 of 19

US 9,456,050 B1

List of hits and misses for page download with
HTTP header data and cookie info to avoid

recalculating templates of URLs from Root

Response.

| ~—/"Whether expected response was received.

~~_/"Whether dynamic fields were generated correctly.

Increment Hit &Fail counts for all items in original

Root Response.

App requests that were not in Root Response are

\fentered in a bin including all key/value fields. Can

be used for narrow prefetching until sufficient data

is available to add to generalized model.

Delete a Bin if Fail result has made last entry obsolete

|™~~—/"Add a bin if storing an unrecognized child adds enough

data to create a new entry that needs a new bin.

US 9,456,050 B1

Sheet 10 of 19

Sep. 27, 2016

U.S. Patent

9

ayepdn

Old

0v9 uig suoq

4

/69 uibLio
PIIYyd ul Junod
Tiv4 @epdn

¢ ozijelauab
/Z9 O} pddN

A

,ﬂ uaippyo
oo USIPIIYOUIG yeo USIPIIYOUIG prg @ utiunoy
uI Junog u1 Junoo uiq oness 0} TN uiq 21e3s 03 N 11H @epdn
Tivd @yepdn LIH @¥epdn Gz9 Paysewun ppy ¥zZ9 Paysew ppy i
oN A >wm> oN A son uibrio
PIlY9 u1junoy
zegésossiw Aue soyojew TN paysep zz9 ¢ [9pow piIyo aney zl9 LIH @tepdn
A
609 é nsay

ajepdn uig uels

U.S. Patent Sep. 27, 2016 Sheet 11 of 19 US 9,456,050 B1

Child URL Multimap

Child UL Payload =
. Root Url Digests for each field
Digest

keyA | keyB | key=C | key=D | keyE

Child URL=W Root URL= val=10| val=22 | val=30]| va=41] val=51

key=A | keyB | key=C | key=D | keyE

Child URL=X Root URL= va=10| val=20| val=30| val=42| val=55

key=A | keyB | key=C | key=D | keyE

Child URL=X Root URL= val=10| val=20| val=30! val=43| va=54

key=A | keyB | key=C | key=D | keyE
va=11| val=23| val=30| val=47| val=58

i

Bin Children Models
Bin Template Children

Child URI=Y Root URL=

key=A | key=B | key=C | key=D | key=E

val=10| val=20| val=30 Ignore| Ignore Child URI=X

FIG. 7

U.S. Patent Sep. 27, 2016

Sheet 12 of 19

US 9,456,050 B1

Child URL Map
Sort Key =
Child URL Payload = .
- Root Url Digests for each field
Digest
. _ _ | key=A | key=B | key=C | key=D | key=E
Child URL=W Root URL= val=10 | val=22| val=30| val=41| val=51
. _ Root key=A | key=B | key=C | key=D | key=E
Child URI=X Template= | val=10| val=20| val=30| Ignore| Ignore
. _ _ 1 key=A | key=B| key=C | key=D | key=E
Child URE=X Root URL= val=10| val=20| val=31| val=42| val=59
) _ _| key=A | key=B| key=C | key=D | key=E
Child URI=Y Root URL= vai=11| vai=23 | val=30| val=47 | vai=58
Bin Children Models
Bin Template Children
key=A | key=B | key=C | key=D | key=E N _
val=10 | val=20| Ignore| Ignore| Ignore Child URE=X
key=A | key=B | key=C | key=D | key=E ; =
val=10 | val=20| val=30| Ignore| Ignore Ch"d UREX

FIG. 8

U.S. Patent Sep. 27, 2016 Sheet 13 of 19 US 9,456,050 B1

Receive web page transaction data at proxy server with web page
S900 transaction analysis module.

4

Analyze web page transaction data to determine relationship with
known data.

S910

r

For data with no
relevant history,
establish a
model. Prefetch
using scanning

S920

techniques.
3 S940
For URLs or related y
web transaction data Forweb
where only certain transactions
S930 | parameters have data that have
been seen before, been seen
check for generalized before, check
model. Check model model validity
validity and prefetch and prefetch
using generalized with applicable
maodel if possible. models.
A A
5950 Check for prefetch parameters that need to
be synethesized and fetch or wait for any
required synthesis data.
y y y

After web transaction is complete update models, associations
S960 with parameters and children, and any other new user history
data to be used in analysis of future web page transactions.

FIG. 9

U.S. Patent Sep. 27, 2016 Sheet 14 of 19 US 9,456,050 B1

1405
Processor(s) Working
// Memory
1410
/ Storage Device(s) Ogg?;:g
1425
1440J Dss
1445
/ Input Device(s) /-
1415
Application(s)

f Output Device(s)

1420

Communications
/ Subsystem

1430

1400 FIG. 10

U.S. Patent Sep. 27, 2016 Sheet 15 of 19 US 9,456,050 B1

User Computer User Computer User Computer

g

1505¢

1515b

Database Database

1520a 1520b

\ 1500

FIG. 11

U.S. Patent

Sep. 27, 2016 Sheet 16 of 19 US 9,456,050 B1
{ User " Client-side N Server-side | . N Content
Application : Optimizer : Optimizer : Server
App : f
requests | ! Not : !
web page 1 Tl prefetched, ' i
: upload . Up'OE"f’B :
I 1 regues ™
: request 2 : a \.\\L Generate
: ! ! response 4
E X Receive |a |
! E response 5 5
. ! Send HTML |, L — ?S:;?o:y . :
,'I// ! '
HTML 8 3 3 response 7 E E
v ! : I
Request : E E
child ! Not ' '
(embedded) Tl prefetched, ! '
object 9 ' upload e Upload ;
: request 10 LM request 11 :
' : Correlate)
' , parameter : N
E i from upload E W Generate
: : request with * /| response 13
4 1 child object 1 ’
: ; 12 ‘
: | 4
: : /!
E E Receive / E
: ' response 14 '
! Send HTML
. ' Send HTML] i
Receive o) response 15 .
HTML 17 4 E response 16 i E
' ; ‘
" | |
H 1 1
1 1 1

U.S. Patent Sep. 27, 2016 Sheet 17 of 19 US 9,456,050 B1

User i | Client-side | : | Serverside R Content
i Application | Optimizer | Optimizer | Server
‘] 1 1
App .:
requests | ! Not ' .
web page 1 Toep| prefetched, | 1 !
! upload e, Upload :
! request 2 ' request 3 ‘\\ :
: : N
') Identify St
: : parameter \:
| : and AN
: : associated HEAN
+ i . b N
: : child 20 i 4q Generate
: ‘ Send : response 4
: Add entry_to b1 prefetch list :
! prefetch list 1 C
! 22 ! t/
! ' Request : /
: : child object /3’
: ! 23 \\ '
X . Receive y X
; ' response 5 . \
! ; Send HTML : Generate
Receive T ?:Snd HsT;\A;‘ T | response 6 ' response 24
HTML 8 ! pon : ;
e e 4
| 1 / 1
i 1] - / i
: : Receive AN
X ' prefetch > '
: : response 25 :
i : Send !
) L prefetch !
I Store e response 26 !
4 ! prefetched ! ‘
Request ' response 27 ' '
child X . '
(embedded) ™ ! ! '
object 9 N Respond : !
B with ! ;
L] prefetched ! !
Receive |4 :‘ response 29 E -:
child object ! ' '
30 i Send ' Update X
X request info \ model and .
: 31 |, hivmiss/fail :
‘ : data 32 ;

FIG. 13

U.S. Patent Sep. 27, 2016 Sheet 18 of 19 US 9,456,050 B1

Scan Input 1010

A A
Start Page Non-scannable Root History?
1012 Root Check oz
1022

Force Root?

[Root Referrer 1018 }—

Root?
1020

1 Yes

Start Root Node 1040

No

Find the root and set to
root for this child node 1042

FIG. 14

U.S. Patent Sep. 27, 2016 Sheet 19 of 19 US 9,456,050 B1

Start 1111

Root &
Html File?
1113

Html Data?
1114

Root

& Def Page?
1116

Start 1112¢

Children & No
Active Root?

U

Start 1112d
- Yes

FIG. 15

US 9,456,050 B1

1
BROWSER OPTIMIZATION THROUGH
USER HISTORY ANALYSIS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims the benefit of and is a non-
provisional of U.S. Provisional Application Ser. No. 61/442,
119 filed on Apr. 11, 2011 entitled “WEB BROWSER
ACCELERATION AND APPLICATION ANALYSIS” and
U.S. Provisional Application Ser. No. 61/550,296 filed on
Oct. 21, 2011 entitled “ANALYZING REAL USER USAGE
DATA TO PREDICT OBJECTS IN WEB PAGES” which
are hereby expressly incorporated by reference in their
entirety for all purposes. Further, applicants also hereby
expressly incorporate by reference in their entirety for all
purposes U.S. application Ser. No. 13/372,299 filed Feb. 13,
2012, now U.S. Pat. No. 9,037,638 entitled “ASSISTED
BROWSING USING HINTING FUNCTIONALITY”, U.S.
application Ser. No. 13/372,347 filed Feb. 13, 2012, now
Pat. No. 9,106,607 entitled “BROWSER BASED FEED-
BACK FOR OPTIMIZED WEB BROWSING”and U.S.
application Ser. No. 13/371,374 filed Feb. 10, 2012 entitled
“PROGRESSIVE PREFETCHING”.

BACKGROUND

HTTP prefetching typically involves pre-requesting con-
tent on behalf of a client or browser before a request for that
content is actually generated as a typical HTTP request and
response in the course of a typical web page transaction.
Certain prefetching embodiments involve pre-requesting
content based on predictions about a future user selection
without any actual action or selection by the user. Other
HTTP prefetching systems, such as the systems discussed
here, involve pre-requesting content in response to a user
action or selection as part of a web page transaction. In such
systems, when content is prefetched it may become possible
to satisfy the request for that content locally (with regard to
the client or browser) or at a location with a lower latency
to the user, thereby negating the need to transmit the request
and wait for the response from a content server. For
example, in cases where there exists high latency between
the client generating the request and the server which
responds with the context requested, each negated request/
response may avoid the penalty for such latency, thereby
potentially reducing the total time required to satisty the
entire series of requests for the client. This may result in an
accelerated end user experience.

In some prefetching systems, the system may have a set
of metrics for determining when a file should or should not
be prefetched. An ideal goal of a prefetcher may be to
identify and prefetch all objects relating to a particular
requested webpage, and to avoid prefetching objects which
are not later requested by a user. For example, when a user
requests a web page, the prefetcher may request (e.g., as a
proxy for the user) various objects embedded in the webpage
in anticipation of those objects being ultimately requested.
Under certain circumstances, however, incorrect objects
may be prefetched repeatedly based on incorrect models or
difficult to quantify exceptions to a rule, resulting in
resources being wasted to prefetch an object that will never
be used. In certain cases, a prefetcher may miss objects that
are embedded in a web page, and it may be difficult to
determine which objects associated with a web page will
ultimately be requested, or how an object seen at a proxy
server relates to other objects. Such circumstances may

10

15

20

25

30

35

40

45

50

55

60

65

2

result in slower performance and increased wait time for a
user while a system fetches an object that was missed by a
prefetcher.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is described in conjunction with
the appended figures.

FIG. 1A illustrates a block diagram of one potential
implementation of a communications system in accordance
with one potential embodiment of the innovations presented
herein.

FIG. 1B illustrates a block diagram of one potential
implementation of a communications system in accordance
with one potential embodiment of the innovations presented
herein.

FIG. 1C illustrates a block diagram of one potential
implementation of a communications system in accordance
with one potential embodiment of the innovations presented
herein.

FIG. 1D describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 2 illustrates a block diagram of one potential imple-
mentation of a communications system in accordance with
one potential embodiment of the innovations presented
herein.

FIG. 3A illustrates a block diagram of one potential
implementation of a communications system in accordance
with one potential embodiment of the innovations presented
herein.

FIG. 3B illustrates a block diagram of one potential
implementation of a communications system in accordance
with one potential embodiment of the innovations presented
herein.

FIG. 4 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 5 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 6 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 7 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 8 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 9 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 10 illustrates a block diagram of one potential
implementation of a computing device in accordance with
one potential embodiment of the innovations presented
herein.

FIG. 11 illustrates a block diagram of one potential
implementation of a communications system in accordance
with one potential embodiment of the innovations presented
herein.

FIG. 12 describes a method for improved prefetching in
accordance with one potential implementation of the present
innovations.

FIG. 13 describes of a method for improved prefetching
in accordance with one potential implementation of the
present innovations.

US 9,456,050 B1

3

FIG. 14 describes one aspect of a method for improved
prefetching in accordance with one potential implementa-
tion of the present innovations.

FIG. 15 describes one aspect of a method for improved
prefetching in accordance with one potential implementa-
tion of the present innovations.

DETAILED DESCRIPTION

The present invention relates, in general, to network
acceleration and, more particularly, to enhancing prefetch
operations in response to a user action with dynamic track-
ing of web page transactions, thus creating a system that
analyses real user usage data to predict objects in web pages.

In one potential implementation, a user of a client side
computer clicks on a web page link. The client side com-
puter then sends a first root HTTP request to a content server
via a proxy server in response to the click. The content
server then sends a first root HTTP response back to the
client side computer via the proxy server. The first root
HTTP response includes embedded URLs that are then
requested as part of child HTTP requests from the client to
the content server via the proxy server.

The proxy server, which has been observing these
requests and responses as part of the web page transaction
initiated by the user click, may identify or associate a
parameter in the web page transaction with a child HTTP
request. When the parameter is seen later, the child may be
prefetched in anticipation that the child will be requested as
part of the web page transaction including the parameter. A
history of prefetching success may be kept for a parameter
and used to weight a priority for prefetching.

For example, if the first root HTTP request includes the
path http://movies.com/actionmovies/moviel, and a child
HTTP request includes http://movies.com/templates/action-
movietemplate, then the proxy server may associate the
parameter “actionmovies” from movies.com with the URL
http://movies.com/templates/actionmovietemplate. Any
time any URL is seen that includes the path http://movi-
es.com/actionmovies, even if the full URL has not been seen
before, the proxy server may prefetch the same child URL.
Subsequent web transactions including user selections
including the paths http://movies.com/actionmovies/movie2
and http://movies.com/actionmovies/moviel00 may con-
firm or deny the validity of the association. If the child
HTTP request always occurs in association with the identi-
fied parameter, then the association is confirmed. If the child
HTTP request only occurs sporadically with the parameter,
additional parameters that impact the child HTTP request
may be identified. Additional non-limiting examples of the
present innovations are described below.

Various embodiments described herein relate to systems,
apparatus, and methods for enhancing prefetch operations
by analyzing real user actions with dynamic tracking of web
page transactions. While various aspects and descriptive
examples embodiments of the invention are discussed above
and throughout the present application, the following
detailed description illustrates embodiments in further detail
to enable one of skill in the art to practice the invention. In
the following description, for the purposes of explanation,
numerous specific details are set forth in order to provide an
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention
may be practiced without some of these specific details. In
other instances, structures and devices that are non-limiting
examples of embodiments are shown in block diagram form
as illustrations. Several embodiments of the invention are

10

15

20

25

30

35

40

45

50

55

60

65

4

described below and, while various features are ascribed to
different embodiments, it should be appreciated that the
features described with respect to one embodiment may be
incorporated with another embodiment as well. By the same
token, however, no single feature or features of any
described embodiment should be considered essential to the
invention, as other embodiments of the invention may omit
such features.

Referring now to FIG. 1A, a system 100 for providing
network acceleration is illustrated. In one embodiment, user
system 102 in FIG. 1 may be client 105 and proxy client 112
in FIG. 1 may be proxy client 110. Client 105 may generate
a request for content from content server 130. In one
embodiment, content server 130 may be a web server, a file
server, a mail server, etc., and the content request may be for
a file, a webpage, an email message, etc.

Proxy client 110 may be configured to intercept the
content request from client 105 and transmit the request over
high latency link 115 to proxy server 120 on behalf of client
105. In one embodiment, high latency link 115 may be a
satellite link, a cellular link, a wireless link, etc. In one
embodiment, the content request may include references to
prefetchable content. Accordingly, proxy server 120, while
prefetching objects for network acceleration, may utilize the
prefetch systems and methods.

In a further embodiment, communications between proxy
server 120 and content server 130 over low latency link 125
are sufficiently fast that acceleration is not needed or would
not provide sufficient benefit for the cost needed to accel-
erate. Hence, upon receipt of communications from content
server 130, proxy server 120 accelerates the communica-
tions between proxy server 120 and proxy client 110 in order
to accelerate communications over high latency link 115.
The network traffic over high latency link 115 is accelerated
while network traffic over low latency link 125 remains
relatively unchanged.

As shown in FIG. 1B, the elements in FIG. 1A may in
some embodiments, function in systems with multiple proxy
servers. In any of the embodiments described below, a
system may include multiple of any component as shown,
such as clients 105A-C operating proxy clients 110A-C,
respectively, and any client may communicate with any
proxy server 120A-C. In certain embodiments, proxy servers
may share information, such that web transaction analysis
performed on proxy server 120a may be communicated to
proxy server 120c¢, for example, to improve the quality and
amount of real user data for each proxy server that may be
used to analyze web transactions and improve prefetch
decision making. In other alternative embodiments, proxy
servers may be organized into groups, such that certain
groups share user data, and certain other groups of proxy
servers do not share user data. Such sharing may be based
on privacy access rights, user groupings, proxy server ser-
vice provider information, or any other grouping scheme. In
further embodiments, a browser plug-in or browser inte-
grated module may perform the functions of a proxy client
or proxy server for any function described herein.

FIG. 1C describes an additional alternative embodiment
where user data, web page transaction data, or other data
may be analyzed using a separate analysis server. In certain
embodiments, a proxy server such as proxy server 1205 may
collect data and send it to prefetch analysis server 121, and
may receive information relevant to prefetching from
prefetch analysis server 121 implementing any analysis and
improved method for prefetching described below. Prefetch
analysis server 121 may, for example, provide proxy server
1204 with a list of objects for potential prefetching and a

US 9,456,050 B1

5

probability of success associated with each object. As the
success or failure of associated prefetching is determined,
the proxy server may provide information to the prefetch
analysis server to update models and probability calcula-
tions. This structure may include a single analysis server for
a single proxy server, or analysis server for a group of proxy
servers.

In a further alternative embodiment, a client such as client
105¢ may communicate directly with a content server such
as content server 130c. In such an embodiment, proxy client
110¢ may serve in an interception, data collection, and
prefetching role. Proxy client 110¢ may communicate with
prefetch analysis server 121 to receive prefetching analysis
and assistance with data from multiple clients. Thus,
although the embodiments described below are discussed
within the context of a proxy server, various embodiments of
the invention may function with a proxy client fulfilling the
role of the proxy server in observing a web page transaction,
and the proxy client may function in conjunction with a
prefetch analysis server or prefetch analysis module to
perform an improved method of prefetching analysis that
enables prefetching of web page objects from content serv-
ers.

FIG. 1D, then, shows a basic method of improving
prefetching using real user usage data to predict objects in
web pages. In step S180, a proxy server such as proxy server
120 of FIG. 1A observes a first root HI'TP request from a
client to a content server and a subsequent root HTTP
response from the content server to the client. In step S182,
the proxy server scans the first HI'TP request and the
subsequent HTTP response to identify parameters. In step
S184, the proxy server observes a following child HTTP
request and child HTTP response associated with the first
HTTP request and response. In step S186, the proxy server
analyzes the parameters and the child HTTP request and
response to identify a potential correlation or match.

As noted in FIG. 1D, steps S180 through S186 all involve
a first web page transaction that includes root and child
portions.

A “root” refers to an initial portion of a web page
transaction that is initiated directly by a user selection or
action. For example, a user clicking on a web page link
initiates a root HTTP request for that link. The root HTTP
response is the response directly responding to that root
request.

“Child” requests and responses are then follow on
requests and responses that result from embedded or calcu-
lated references to objects in root objects. The child objects,
requests, and responses are always one or more steps
removed from the user action by a root that directly responds
to the user action.

Continuing the description of FIG. 1D, step S188
describes that a proxy server observes a second root HTTP
request from a client to a content server and a subsequent
root HT'TP response from the content server to the client. In
step S190, the proxy server scans the second root HTTP
request and the subsequent HTTP response to identify
parameters. Finally, in step S192, the proxy server
prefetches objects expected as child HTTP requests and
responses to the second root HTTP request and response
based on a previously identified correlation or match
between a parameter of the second root HTTP request and
the child object. Just as steps S180 through S186 described
are part of a first web page transaction, steps S188 through
S192 are part of a second web page transaction that can use
the real user data from the first web page transaction to

20

30

40

45

6

predict a child object that will be part of a second web page
transaction that may be different from the first web page
transaction.

Additionally, the method described in FIG. 1D may be
carried out by any number of different proxy servers. For
example, all steps involving a proxy server related to the first
web page transaction may use a first proxy server, such as
proxy server 120a from FIG. 1B, while all steps relating to
the second web page transaction may use a second proxy
server, such as proxy server 1205. The correlation data from
the first web page transaction may be shared between proxy
servers 120a and 1205, perfecting as part of the second web
page transaction at a second proxy server using real user
usage data from the first web page transaction and first proxy
server. In additional further embodiments, any individual
step within or across web page transactions may occur using
multiple proxy servers that share information.

Embodiments of the systems described herein can be
implemented in a number of ways without departing from
the scope of the invention. In some embodiments, as
described above, a separate proxy is implemented, such that
aproxy server and a proxy client are stand alone devices. For
example, a transparent intercept proxy can be used to
intercept traffic in a way that is substantially transparent to
users at the client-side of the proxy tunnel. In other embodi-
ments, the optimizer is implemented as an in-line optimizer.
For example, the client proxy is implemented within a user
terminal and the server proxy is implemented within a
provider terminal (e.g., a satellite base station or gateway, a
cable head-end, a digital subscriber line access multiplexer
(DSLAM), etc.). Other configurations are possible in other
embodiments. For example, embodiments of the proxy
server are implemented in the Internet cloud (e.g., on
commercial network leased server space). Embodiments of
the proxy client may be implemented within a user’s per-
sonal computer, within a user’s modem, in a physically
separate component at the customer premises, etc.

References herein to “intercepting” data should be con-
strued broadly to include any useful slowing, sampling,
re-routing, and/or other techniques that allow processing of
the data as required according to various embodiments. In
some embodiments, traffic passes through the proxy server,
where it is “intercepted” by being buffered for analysis and
processing. For example, the buffering may be used to slow
and accumulate traffic for analysis, as described more fully
below. Notably, certain embodiments described as using a
component or module to intercept the traffic may actually be
implemented by having a different component intercept the
traffic, from which web page analysis module may receive
the intercepted traffic for processing.

Additionally, while certain embodiments include inter-
cepting as described above, certain other embodiments may
function without such intercepting. For example, in one
potential non-limiting embodiment, a browser or module
within a client may create and send reports detailing use data
database without the system requiring redirection or inter-
ception of any data. Thus, any embodiment described herein
may have associated alternative embodiments without inter-
ception or with interception essentially occurring within a
web browser or a web browser plug-in.

As used herein, “content servers” is intended broadly to
include any source of content in which the users may be
interested. For example, a content server 130 may provide
website content, television content, file sharing, multimedia
serving, voice-over-Internet-protocol (VoIP) handling, and/
or any other useful content. It is worth noting that, in some
embodiments, the content servers 130 are in direct commu-

US 9,456,050 B1

7

nication with the proxy servers 120 (e.g., not through the
network 125). For example, the proxy server 120 of FIG. 1
may be located in a gateway that includes a content or
application server. As such, discussions of embodiments
herein with respect to communications with content servers
130 over the network 125 are intended only to be illustrative,
and should not be construed as limiting.

In some embodiments, when the client 105 communicates
with the content server 130, the proxy server 120 intercepts
the communications for one or more purposes. As described
below, the proxy server 120 may be part of a server system
that includes components for server-side communications
(e.g., base stations, gateways, satellite modem termination
systems (SMTSs), digital subscriber line access multiplexers
(DSLAMSs)). The proxy server 120 may act as a transparent
and/or intercepting proxy. For example, the proxy client 110
is in communication with the proxy server 120 over a
client-server communication link 115, and the proxy server
120 is in communication with the content server 130 over a
content network link 125. The proxy server 120 may act as
a transparent man-in-the-middle to intercept the data as it
passes between the client-server communication link 115
and the content network link 125. Some purposes of the
interception may include filtering, caching, parsing, and/or
otherwise processing the requests and responses. For
example, when the client system 105 requests a web object
from a content server 130, the proxy server 120 may
intercept and parse the request to implement prefetching
and/or other types of functionality in a way that is com-
pletely transparent to both the client 105 and the content
server 130.

Turning now to FIG. 2, a system 200 for optimizing
transfer of content from the Internet to a web browser is
illustrated. In one embodiment, the system may include a
user system 202, a proxy client 212, and a proxy server 232.
The user system 202 may include a client graphical user
interface (GUI) 210. Client GUI 210 may allow a user to
configure performance aspects of the system 200. For
example, the user may adjust the compression parameters
and/or algorithms, content filters (e.g., blocks elicit web-
sites), and enable or disable various features used by the
system 200. In one embodiment, some of the features may
include network diagnostics, error reporting, as well as
controlling, for example, prefetch response abort 242. Such
control may be adding and/or removing pages (i.e. URLs) to
or from whitelist 248 and/or blacklist 249.

In one embodiment, the user selects a universal recourse
locator (URL) address which directs web browser 206 (e.g.,
Internet Explorer®, Firefox®, Netscape Navigator®, etc.) to
a website (e.g., cnn.com, google.com, yahoo.com, etc.). In a
further embodiment, web browser 206 may check browser
cache 204 to determine whether the website associated with
the selected URL is located within browser cache 204. If the
website is located within browser cache 204, the amount of
time the website has been in the cache is checked to
determine if the cached website is “fresh” (i.e., new) enough
to use. For example, the amount of time that a website may
be considered fresh may be 5 minutes; however, other time
limits may be used. Consequently, if the website has been
cached and the website is considered fresh, then web
browser 206 renders the cached page. However, if the
website has either not been cached or the cached webpage is
not fresh, web browser 206 sends a request to the Internet for
the website.

In one embodiment, redirector 208 intercepts the request
sent from web browser 206. Redirector 208 instead sends the
request through a local bus 205 to proxy client 212. In some

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiments, proxy client 212 may be implemented as a
software application running on user system 202. In an
alternative embodiment, proxy client 212 may be imple-
mented on a separate computer system and is connected to
user system 202 via a high speed/low latency link (e.g., a
branch office LAN subnet, etc.). In one embodiment, proxy
client 212 includes a request parser 216. Request parser 216
may check cache optimizer 214 to determine if a cached
copy of the requested website may still be able to be used.
Cache optimizer 214 is in communication with browser
cache 204 in order to have access to cached websites. Cache
optimizer 214 is able to access browser cache 204 without
creating a redundant copy of the cached websites, thus
requiring less storage space.

According to one embodiment, cache optimizer 214
implements more effective algorithms to determine whether
a cached website is fresh. In one embodiment, cache opti-
mizer 214 may implement the cache expiration algorithms
from HTTP v1.1 (i.e., RFC 2616), which may not be
natively supported in web browser 206. For example,
browser cache 204 may inappropriately consider a cached
website as too old to use; however, cache optimizer 214 may
still be able to use the cached website. More efficient use of
cached websites can improve browsing efficiency by reduc-
ing the number of Internet accesses.

In one embodiment, if the requested website is not able to
be accessed from the cached websites, request parser 216
checks prefetch manager 220 to determine if the requested
website has been prefetched. Prefetching a website is when
content from the website is accessed, downloaded, and
stored before a request to the website is made by web
browser 206. Prefetching can potentially save round-trips of
data access from user system 202 to the Internet.

In a further embodiment, if the requested website has not
been prefetched, then request parser 216 forwards the
request to a transmission and protocol module 228. Trans-
mission and protocol module 228a¢ may include a request
encoder that encodes the request into a compressed version
of the request using one of many possible data compression
algorithms. For example, these algorithms may employ a
coding dictionary which stores strings so that data from
previous web objects can be used to compress data from new
pages. Accordingly, where the request for the website is 550
bytes in total, the encoded request may be as small as 50
bytes. This level of compression can save bandwidth on a
connection, such as high latency link 230. In one embodi-
ment, high latency link 230 may be a wireless link, a cellular
link, a satellite link, a dial-up link, etc.

In one embodiment, transmission and protocol module
228a may include encoding for is Intelligent Compression
Technology’s® (ICT) transport protocol (ITP). In other
embodiments, other protocols may be used, such as the
standard transmission control protocol (TCP). In one
embodiment, transmission and protocol module 228 main-
tains a persistent connection with proxy server 232. The
persistent connection between proxy client 212 and proxy
server 232 enables system 200 to eliminate the inefficiencies
and overhead costs associated with creating a new connec-
tion for each request.

In one embodiment, the encoded request is forwarded to
transmission and protocol module 2285 and is decoded.
Transmission and protocol module 2285 may use a decoder
which is appropriate for the encoding performed by trans-
mission and protocol module 228a. In one embodiment, this
process utilizes a coding dictionary in order to translate the
encoded request back into a standard format which can be
accessed by the destination website.

US 9,456,050 B1

9

A request may be sent directly from proxy server 232 to
a content server over a network connection such as low
latency link 256. Alternately, as part of an analysis of any
web transaction, the request may be sent to prefetch scanner
246, web transaction tracking 248, client cache model 250,
cookie model 252, and/or request synthesizer 254 for vari-
ous analysis including to analyze and improve web trans-
actions. For example, if the HTTP request includes a cookie
(or other special instructions), such as a “referred by” or type
of encoding accepted, information about the cookie or
instructions may be stored in a cookie model 252. After or
concurrent with the analysis the proxy server 132 may
transmit the decoded request to the destination website over
a low latency link 256. Low latency link 256 may be, for
example, a cable modem connection, a digital subscriber
line (DSL) connection, a T1 connection, a fiber optic con-
nection, or an other suitable network connection.

In response to the request, a response parser 244 receives
a response from the requested website. In one embodiment,
this response may include an attachment, such as an image
and/or text file. Some types of attachments, such as HTML,
XML, CSS, or Java Scripts, may include references to other
“in-line” objects that may be needed to render a requested
web page. In one embodiment, when response parser 244
detects an attachment type that may contain such references
to “in-line” objects, response parser 244 may forward the
objects to a prefetch scanner 246.

In one embodiment, prefetch scanner 246 scans the
attached file and identifies URLs of in-line objects that may
be candidates for prefetching. For example, candidates may
be identified by HTML syntax, such as the token “img src=".
In addition, objects that may be needed for the web page
may also be specified in java scripts that appear within the
HTML or CSS page or within a separate java script file. In
one embodiment, the identified candidates are added to a
candidate list.

In one embodiment, for the candidate URLs, prefetch
scanner 246 may notify prefetch response abort 242 of the
context in which the object was identified, such as the type
of object in which it was found and/or the syntax in which
the URL occurred. This information may be used by prefetch
response abort 242 to determine the probability that the URL
will actually be requested by web browser 206.

According to a further embodiment, the candidate list is
forwarded to web transaction tracking 248. Web transaction
tracking 248 may be used to track which URLs should be
allowed to be prefetched, and may perform parameter cor-
relation or matching for parameters identified in a web
transaction that are correlated with child HTTP requests.
Web transaction tracking 248 may also include white and
blacklists for known errors in prefetching systems that may
select an incorrect object for prefetching repetitively. Based
on the host (i.e., the server that is supplying the URL), the
file type (e.g., application service provider (ASP) files
should not be prefetched), etc. Accordingly, a whitelist and
blacklist may control prefetching behavior by indicating
which URLs on the candidate list should or should not be
prefetched. In many instances with certain web pages/file
types, prefetching may not work. In addition to ASP files,
web pages which include fields or cookies may have prob-
lems with prefetching.

In one embodiment, once the candidate list has been
passed through whitelist and blacklist, a modified candidate
list is generated and then the list is forwarded to a client
cache model 250. The client cache model 250 attempts to
model which items from the list will be included in browser
cache 204. As such, those items are removed from the

10

20

25

30

35

40

45

55

60

65

10

modified candidate list. Subsequently, the updated modified
candidate list is forwarded to a request synthesizer 254
which creates an HTTP request in order to prefetch each
item in the updated modified candidate list. The HTTP
request header may include cookies and/or other instructions
appropriate to the website and/or to web browser 206’s
preferences using information obtained from cookie model
252. The prefetch HTTP requests may then be transmitted
through low latency link 256 to the corresponding website.

In alternative embodiments, objects identified for poten-
tial prefetching may be assigned a priority rather than being
checked against a whitelist or a blacklist. Objects assigned
a priority may be sent to a prefetch accumulator as part of
transmission and protocol module 2285, with the highest
currently identified prefetch candidates sent over the net-
work whenever resources are available for prefetching.

When an object is received at response parser 244,
response parser 244 may pass the response to prefetch
scanner 246 to identify additional child HTTP candidates for
prefetching, and may concurrently or subsequently forward
the response to transmission and protocol module 2285 to be
transmitted back to the user system 102. A response encoder,
in certain embodiments, accesses a coding dictionary in
order to encode the prefetched response just as described
above for the request. Transmission and protocol module
228b may then forward the encoded response over high
latency link 230 and then to transmission and protocol
module 228a, where the response may be decoded and
forwarded the response to response manager 224. In one
embodiment, if the response is a prefetched response, then
response manager 224 creates a prefetch socket to receive
the prefetched item as it is downloaded and to manage
delivery of the prefetched object when it is later requested in
the normal course of the relevant web page transaction.

Response manager 224 transmits the response over local
bus 205 to redirector 208. Redirector 208 then forwards the
response to web browser 206 which renders the content of
the response.

FIG. 3A shows a simplified block diagram 320 illustrating
an embodiment of a server system 220 that may be one
potential embodiment of a proxy server 120 as shown in
FIG. 1, coupled between a network 140 and an antenna 210.
The server system 220 has a number of components, includ-
ing a network interface module 310, a modem termination
module 330, and a server-side transceiver module 360.
Components of the server system 220 may be implemented,
in whole or in part, in hardware. Thus, they may include one
or more Application Specific Integrated Circuits (ASICs)
adapted to perform a subset of the applicable functions in
hardware. Alternatively, the functions may be performed by
one or more other processing units (or cores), on one or more
integrated circuits (ICs). In other embodiments, other types
of integrated circuits may be used (e.g., Structured/Platform
ASICs, Field Programmable Gate Arrays (FPGAs), and
other Semi-Custom ICs), which may be programmed. Each
may also be implemented, in whole or in part, with instruc-
tions embodied in a computer-readable medium, formatted
to be executed by one or more general or application specific
controllers.

Embodiments of the server system 220 receive data from
the network 140 (e.g., the network 140 of FIG. 1A), includ-
ing data originating from one or more content servers 150
(e.g., or other types of servers, as discussed above) and
destined for one or more users in a spot beam (e.g., at a user
system 110 in a spot beam 235, as shown in FIG. 2). The data
is received at the network interface module 310, which
includes one or more components for interfacing with the

US 9,456,050 B1

11

network 140. For example, the network interface module
310 includes a network switch and a router.

In some embodiments, the network interface module 310
interfaces with other modules, including a third-party edge
server 312 and/or a traffic shaper module 314. The third-
party edge server 312 may be adapted to mirror content (e.g.,
implementing transparent mirroring, like would be per-
formed in a point of presence (“POP”) of a content delivery
network (“CDN™)) to the server system 220. For example,
the third-party edge server 312 may facilitate contractual
relationships between content providers and service provid-
ers to move content closer to users in a communications
network (e.g., the satellite communications network 200 of
FIG. 2). The traffic shaper module 314 controls traffic from
the network 140 through the server system 220, for example,
to help optimize performance of the communications system
(e.g., by reducing latency, increasing effective bandwidth,
etc.). In one embodiment, the traffic shaper module 314
delays packets in a traffic stream to conform to a predeter-
mined traffic profile.

Traffic is passed from the network interface module 310
to one or more processing modules. In some embodiments,
the processing modules include a server-side accelerator
module 350, a scheduler module 335, and support modules
346. In some embodiments, all traffic from the network
interface module 310 is passed to the server-side accelerator
module 350 for handling, as described more fully below. In
other embodiments, some or all of the traffic from the
server-side accelerator module 350 is passed to the support
modules 346. For example, in one embodiment, real-time
types of data (e.g., User Datagram Protocol (“UDP”) data
traffic, like Internet-protocol television (“IPTV”) program-
ming) bypass the server-side accelerator module 350, while
non-real-time types of data (e.g., Transmission Control
Protocol (“TCP”) data traffic, like web video) are routed
through the server-side accelerator module 350 for process-
ing. In such embodiments, certain types of data may be
subject to enhanced prefetching according to aspects of the
present innovations, while other types of data may have
limited or no prefetching applied to the datastream. All such
data streams, however, may share the same network chan-
nels using a server such as server system 220. Embodiments
of the server-side accelerator module 350 provide various
types of application, WAN/LAN, and/or other acceleration
functionality.

In some embodiments, the server-side accelerator module
350 is adapted to provide high payload compression. This
allows faster transfer of the data and enhances the effective
capacity of the network. The server-side accelerator module
350 can also implement protocol-specific methods to reduce
the number of round trips needed to complete a transaction,
such as by prefetching objects embedded in HTTP pages. In
other embodiments, functionality of the server-side accel-
erator module 350 is closely integrated with the satellite link
through other modules, including the support modules 346,
the scheduler module 335, the modem termination module
330, etc., to reduce upload bandwidth requirements and/or to
more efficiently schedule to the satellite link. For example,
the link layer may be used to determine whether packets are
successfully delivered, and those packets can be tied more
closely with the content they supported through application
layer information. In certain embodiments, these and/or
other functions of the server-side accelerator module 350 are
provided by a server optimizer 230 resident on (e.g., or in
communication with) the server-side accelerator module
350.

30

40

45

12

In some embodiments, the server optimizer 230 is imple-
mented with multiple servers. Each of the multiple servers
may be configured to handle a portion of the traffic passing
through the server-side accelerator module 350. It is worth
noting that functionality of various embodiments described
herein use data which, at times, may be processed across
multiple servers. As such, one or more server management
modules may be provided for processing (e.g., tracking,
routing, partitioning, etc.) data across the multiple servers.
For example, when one server within the server optimizer
230 receives a request from a user (e.g., from a user system
110 on a spot beam 235, as shown in FIG. 2), the server
management module may process that request in the context
of other requests received at other servers in the server
optimizer 230. In one embodiment, coordination between
servers is implemented in support of singular storage of data.
For example, it may be desirable to avoid caching the same
byte sequence twice in two servers that are in communica-
tion with each other (e.g., where both servers are part of a
storage area network 322 (“SAN”) in the server system 220).

It will be appreciated that, while the server optimizer 230
is illustrated as part of the server system 220, this should not
be construed as limiting the location or implementation of
the server optimizer 230. In one embodiment, the server
optimizer 230 is implemented by a server in communication
with the server system 220 over the network 140. For
example, a third party may lease server space that is acces-
sible over the Internet or a private connection (e.g., a
high-speed fiber connection). The leased server space may
be used for serving the server optimizer 230.

Data processed by the server-side accelerator module 350
may pass through the support modules 346 to the scheduler
module 335. Embodiments of the support modules 346
include one or more types of modules for supporting the
functionality of the modem termination module 330, for
example, including a multicaster module, a fair access
policy (“FAP”) module, and an adaptive coding and modu-
lation (“ACM”) module. In certain embodiments, some or
all of the support modules 346 include off-the-shelf types of
components. An accounting module implement various
accounting-related functions. In one embodiment, the
accounting module collects data from multiple components
to determine how much network usage to attribute to a
particular user. For example, the accounting module may
determine how to count upload or download traffic against
a user’s fair access policy (FAP). In another embodiment,
the accounting module dynamically adjusts FAPs according
to various network link and/or usage conditions. For
example, the accounting module may adjust FAPs to encour-
age network usage during lower traffic times. In yet another
embodiment, the accounting module affects the operation of
other components of the modem termination module 330 as
a function of certain FAP and/or other accounting condi-
tions. For example, the accounting module may direct a
multicasting module to multicast certain types of data or to
prevent certain users from joining certain multicast streams
as a function of FAP or other considerations.

When traffic has been processed by the server-side accel-
erator module 350 and/or the support modules 346, the
traffic is passed to the scheduler module 335. Embodiments
of the scheduler module 335 are configured to provide
various functions relating to scheduling the links of the
communications system handled by the server system 220.
For example, the scheduler module 335 may manage link
bandwidth by scheduling license grants within a spot beam.
A scheduler may also include prefetch scheduling or accu-
mulation to utilize resources to improve end user experience

US 9,456,050 B1

13

by prefetching objects. A scheduler may include priority
ratings for all data, including prefetch data, and schedule
data for transmission based on priority ratings.

In some embodiments, functionality of the server system
220 involves communication and interaction with the SAN
322. Embodiments of the SAN 322 include a shared storage
module 320, which may include any useful type of memory
store for various types of functionality of the server system
220. For example, the shared storage module 320 may
include volatile or non-volatile storage, servers, files,
queues, etc. In certain embodiments, the SAN 322 further
includes a captive edge server 325, which may be in
communication with the shared storage module 320. In
some embodiments, the captive edge server 325 provides
functionality similar to that of the third-party edge server
312, including content mirroring. For example, the captive
edge server 325 may facilitate different contractual relation-
ships from those of the third-party edge server 312 (e.g.,
between the server system 220 provider and various content
providers). In certain embodiments, the captive edge server
325 and/or the third-party edge server 312 are in commu-
nication with server-side storage (e.g., within the SAN 322).

It will be appreciated that components of the server
system 220 may provide many different types of function-
ality. For example, some embodiments oversee a variety of
decoding, interleaving, decryption, and unscrambling tech-
niques. Other embodiments manage functions applicable to
the communication of content downstream through a satel-
lite (e.g., the satellite 205 of FIG. 2) to one or more users
(e.g., user systems 110 of FIG. 2). As described more fully
below with reference to various embodiments, the server
system 220 may handle different types of traffic in different
ways. For example, some uses of the communications
system involve contractual relationships and/or obligations
with third-party content providers to interface with their
edge servers (e.g., through the third-party edge server 312),
while other uses involve locally “re-hosting” certain content
(e.g., through the captive edge server 325). Further, some
use cases handle real-time types of data (e.g., UDP data)
differently from non-real-time types of data (e.g., TCP data).
Many other uses are possible.

In certain embodiments, some or all of these downstream
communications functions are handled by the server-side
transceiver module 360. Embodiments of the server-side
transceiver module 360 encode and/or modulate data, using
one or more error correction techniques, adaptive encoding
techniques, baseband encapsulation, frame creation, etc.
(e.g., using various modcodes, lookup tables, etc.). Other
functions may also be performed by the server-side trans-
ceiver module 360 or other components of the server system
220, including upconverting, amplifying, filtering, tuning,
tracking, etc.

FIG. 3B shows another potential implementation of a
client such as client 105 of FIG. 1, in an embodiment where
the client includes multiple client devices accessing a net-
work 115 through a user terminal 305. The embodiment of
FIG. 3A includes a user terminal 305 coupled between a user
antenna 115 and a client 360. Some embodiments are
configured to communicate over a satellite communications
system by interfacing with a server system over a satellite
link (e.g., the server system 220 of FIG. 3A). Alternative
embodiments may use links that are partially or entirely
terrestrial. Interfacing and other functionality of the user
system 110 may be provided by components of the user
terminal 305, including a terminal transceiver module 360,
data processing modules 365, and a client storage module
387. Embodiments of the data processing modules 365

10

15

20

25

30

35

40

45

50

55

60

65

14

include a MAC module 390, a terminal accelerator module
380, and a routing module 370.

The components may be implemented, in whole or in part,
in hardware. Thus, they may include one or more ASICs
adapted to perform a subset of the applicable functions in
hardware. Alternatively, the functions may be performed by
one or more other processing modules (or cores), on one or
more integrated circuits. In other embodiments, other types
of integrated circuits may be used (e.g., Structured/Platform
ASICs, FPGAs, and other Semi-Custom ICs), which may be
programmed. Each may also be implemented, in whole or in
part, with instructions embodied in a computer-readable
medium, formatted to be executed by one or more general or
application specific processors.

A signal from the user antenna 115 is received by the user
terminal 305 at the terminal transceiver module 360.
Embodiments of the terminal transceiver module 360 may
amplify the signal, acquire the carrier, and/or downconvert
the signal. In some embodiments, this functionality is per-
formed by other components (either inside or outside the
user terminal 305).

In some embodiments, data from the terminal transceiver
module 360 (e.g., the downconverted signal) is communi-
cated to the data processing modules 365 for processing. For
example, data is communicated to the MAC module 390.
Embodiments of the MAC module 390 prepare data for
communication to other components of, or in communica-
tion with, the user terminal 305, including the terminal
accelerator module 380, the routing module 370, and/or the
client 360. For example, the MAC module 390 may modu-
late, encode, filter, decrypt, and/or otherwise process the
data to be compatible with the client 360.

In some embodiments, the MAC module 390 includes a
pre-processing module 392. The pre-processing module 392
implements certain functionality for optimizing the other
components of the data processing modules 365. In some
embodiments, the pre-processing module 392 processes the
signal received from the terminal transceiver module 360 by
interpreting (e.g., and decoding) modulation and/or coding
schemes, interpreting multiplexed data streams, filtering the
digitized signal, parsing the digitized signal into various
types of information (e.g., by extracting the physical layer
header), etc. In other embodiments, the pre-processing mod-
ule 392 pre-filters traffic to determine which data to route
directly to the routing module 370, and which data to route
through the terminal accelerator module 380 for further
processing.

Embodiments of the terminal accelerator module 380
provide substantially the same functionality as the server-
side accelerator module 350, including various types of
applications, WAN/LAN, and/or other acceleration func-
tionality. In one embodiment, the terminal accelerator mod-
ule 380 implements functionality of proxy server applica-
tions, like interpreting data communicated by the server
system 220 using high payload compression, handling vari-
ous prefetching functions, parsing scripts to interpret
requests, etc. In certain embodiments, these and/or other
functions of the terminal accelerator module 380 are pro-
vided by a client optimizer 220 resident on (e.g., or in
communication with) the terminal accelerator module 380.
Notably, in some embodiments, the client optimizer 220 is
implemented as client optimizer on the user terminal 305
and/or client optimizer 371 on the client 3605. Data from the
MAC module 390 and/or the terminal accelerator module
380 may then be routed to one or more CPEs 360 by the
routing module 370.

US 9,456,050 B1

15

In some embodiments, output from the data processing
modules 365 and/or the terminal accelerator module 380 is
stored in the client storage module 387a. Further, the data
processing modules 365 and/or the terminal accelerator
module 380 may be configured to determine what data
should be stored in the client storage module 387a and
which data should not (e.g., which data should be passed to
the client 360). It will be appreciated that the client storage
module 387a may include any useful type of memory store
for various types of functionality of the user system 110. For
example, the client storage module 3874 may include vola-
tile or non-volatile storage, servers, files, queues, etc.

In certain embodiments, storage functionality and/or
capacity is shared between an integrated (e.g., on-board)
client storage module 3874 and an extended (e.g., off-board)
storage module 3894. For example, the extended storage
module 389a¢ may be implemented in various ways, includ-
ing as an attached peripheral device (e.g., a thumb drive,
USB hard drive, etc.), a wireless peripheral device (e.g., a
wireless hard drive), a networked peripheral device (e.g., a
networked server), etc. In some embodiments, the user
terminal 305 interfaces with the extended storage module
389a through one or more ports 388a. In one embodiment,
functionality of the client storage module 387 is imple-
mented as storage integrated into or in communication with
client 360 (e.g., as client storage module 38756 in client
3605).

Some embodiments of the client 360 are standard client
360 devices or systems with no specifically tailored hard-
ware or software (e.g., shown as client 360a). Other embodi-
ments of the client 360, however, include hardware and/or
software modules adapted to optimize or enhance integra-
tion of the client 360 with the user terminal 305 (e.g., shown
as alternate client 3605). For example, the alternate client
3605 is shown to include a client accelerator module 462, a
client processor module 466, and a client storage module
387b. Embodiments of the client accelerator module 462 are
configured to implement the same, similar, or complemen-
tary functionality as the terminal accelerator module 380.
For example, the client accelerator module 462 may be a
software client version of the terminal accelerator module
380. In some embodiments, some or all of the functionality
of the data processing modules 365 is implemented by the
client accelerator module 462 and/or the client processor
module 466. In these embodiments, it may be possible to
reduce the complexity of the user terminal 305 by shifting
functionality to the alternate client 3605.

Embodiments of the client storage module 3875 may
include any type of object or byte caching, data serving,
and/or other storage-related components in or in communi-
cation with the alternate client 3605. In some embodiments,
the client storage module 3876 is in communication with an
extended storage module 3895, for example, via one or more
ports 388b. Of course, many types of client 360 are possible,
and the functionality of the client 360 may be implemented
in a number of different types of devices or systems. In some
embodiments, the client 360 is a fixed or mobile end device
for displaying content to the user, like a television, personal
computer, home theater system, cellular telephone, portable
music or video player, personal digital assistant, etc. In other
embodiments, the client 360 is an intermediate device,
configured to communicate to another client 360 end device
(or even to another client 360 intermediate device). For
example, the client 360 may include a set-top box, a home
networking component (e.g., a router, a hub, a femtocell,
etc.), or any other type of intermediate device. As shown,

10

15

20

25

30

35

40

45

50

55

60

65

16

client 360c¢ is in communication with the user terminal 305
indirectly through client 3605, where client 3605 is acting as
an intermediate device.

Further, in some embodiments, the client 360 is inte-
grated, partially or completely, with the user terminal 305.
For example, a home theater system may be built around a
main interface component that includes a network interface
having user terminal 305 functionality, certain client 360
functionality, and ports for wired or wireless communication
with additional client 360 devices. Embodiments of user
terminals 305 and/or CPEs 360 may also be configured for
compatibility with certain communication standards. For
example, CPEs 360 may be configured to support plug-and-
play functionality (e.g., through the Digital Living Network
Alliance (DLNA) standard), wireless networking (e.g.,
through the 802.11 standard), etc.

FIG. 4 is a chart of how one potential implementation of
a system may identify parameters and correlations or
matches between parameters and child objects according to
an aspect of the innovations presented herein. While FIG. 4
presents one potential example using Netflix.com™, many
additional permutations will be possible given the described
system, and the methods are not particular to any given host
or structure created underlying a particular host.

In 420 of FIG. 4, an HTTP root request may be observed
by a proxy server. The following step 421 is to create a root
template from this data. A parser may tokenizes root HTTP
request data into a series of key/value pairs. The root
template may comprise a hostname and the keys for each of
these pairs. Each unique root template may have a series of
Bins, which are found in step 422. A Bin is defined by a set
of values for some of the fields. In the example of FIG. 4,
one Bin contains all the child URLs for this root template
that would be downloaded anytime Folderl has the value
“Movies”, which would be requested regardless of which
movie might be selected. Another bin might cover the URLs
specific to the movie ‘Grownups’, and another URLS that
are only loaded when IE is downloading any movie page for
the specific host.

Each Bin contains a list of child URLs 423 and the
probabilities of their being requested, which control prefetch
operations in a proxy server. These child URLs may include
dynamic elements such as session IDs, user IDs, tracking
information, and random values. Dynamic fields are repre-
sented by a mask value. The next step is to fill in the values
for these fields at 425 with the values to use for this
download. The Child Origin model 416 specifies how to get
the values for these dynamic fields. In the example in FIG.
4, it might say that the value for the key “tcw=" can be
obtained from the value of the cookie with the name
“NetflixSession”. In other cases, it might specify a value
should be synthesized from the current time stamp or a value
that would have been set in a previous download.

A special case occurs if a field is known to vary for each
download, but not in a way that can be anticipated. If the
field is download consequential, then there is no point in
prefetching this URL: the prefetch URL will never match the
browser request and the mismatched response can not be
used. In this case, the child URL may be left in the list with
special marking so that it can be used to prevent the app
requests from being added to the unrecognized model.

The final step is to determine the download consequen-
tiality 426 of each fields in each child URL. If a field is
download inconsequential, it does not affect the response
that will be delivered. The ClientSideProxy can send the

US 9,456,050 B1

17

prefetched response to the browser if the browser request
differs from the prefetched response only by inconsequential
fields.

FIG. 5 shows how a URL models may be updated in one
potential embodiment that may work in conjunction with the
embodiment described in FIG. 5 when a download is com-
pleted and a tracker module updates root template with a
report for child objects of the root including details of the
hits (indicating an object was prefetched and used), misses
(indicating an object was requested in response to the root
but not prefetched), and fails (where an object was
prefetched, not requested in response to the root). A report
as part of step 501 may also includes HTTP header data and
cookie information. To save CPU cycles, the templates for
the root and child that are calculated when the Root Request
was processed by the proxy server can be included in the
report data. This hit, miss, and fail data may then be used to
identify future parameters and correlations when selecting
objects to prefetch in a web page transaction. For example,
the system may have a percentage threshold above which a
correlation or match is sufficiently established. Alternatively,
a prefetching score may be impacting by hit, miss, and fail
percentages, such that a correlation based on the hit, miss,
and fail data impacts the priority an object is given in a
prefetch accumulator that utilized system resources for
prefetching when the resources are available.

The child consequence model in step 510 checks whether
the response to each child URL follows the model of field
consequentiality as described above for FIG. 5. If a model
already exists, the result can confirm or contradict the
model. If the model is still being formulated, the new data
can be added to the database. This may occur when the
system decides, for reliability or other purposes, that a
correlation has not yet sufficiently been established for an
identified parameter.

The child origin model in step 520 checks whether the
dynamic fields in each child were populated correctly. For a
hit, all models can be affirmed. For a fail, the misses should
be checked to see if a miss was due to an error in synthe-
sizing a dynamic field. If so, the entry was handled correctly
by the bin children and can effectively be considered a hit,
but the child origin model failed for that field and it may
need to be adjusted. For a miss, the new data can be added
to the URL model for this child URL.

Recognized URLs will either be Hits or Fails, so the
appropriate bin children model for each URL may be
updated at step 530. A hit may increase the probability for
that URL in the model, while a Fail will decrease the
probability of that entry.

A miss is usually an unrecognized URL: one that is not yet
part of the model. Until adequate information is available,
the behavior of the system may treat this information as
follows: (1) the child URL is added to a Bin that is defined
by all values in the URL: the model applies only to exact
copies of the root URL; (2) all fields in the child URL are
assumed to be static, and for the next download the old
values will be re-used; and (3) all fields in the Child URL are
assumed to be consequential such that the prefetched
response can only be supplied if there is an exact match with
the browser request URL. Each of these behaviors may be
controlled individually. A child consequence model may be
available from other domains, proxy servers, templates, or
bins, so that it can be used before a good bin model is
available. Conversely, a child URL can be added to a bin
before sufficient data is available about its consequentiality.
Additional details describing how models are created are
discussed further below.

10

15

20

25

30

35

40

45

50

55

60

65

18

A miss can also be a recognized URL with a consequential
but unsynthesizeable dynamic field as discussed above. In
that case, the bin model is affirmed, but the miss URL is not
added to any new list, as there is not point in prefetching this
URL in the future.

The updating of the models can cause a bin to be added
or deleted at step 550. A new child URL may require
creating a new bin defined by all the values. When enough
data is available about the child, the child might be moved
to a new bin that is defined by only a subset of the fields,
such as the bin “Folderl="Movie’” in the example of FIG.
5. When all entries in a bin have failed or inactive too long,
the bin or even the entire template can be removed.

Additional details will now be discussed for one potential
implementation of template matching that may be used to
identify parameters and correlations between parameters
and objects when a proxy server observes a web transaction.
The following system may be used with the systems
described in FIGS. 1D, 4, and 5 discussed above.

For the purposes of this description, a template is a
sequence of fields specific to a domain and then defined by
the path components and query keys in the URL. This
system for URL modeling may create independent models
for each unique template. This may simplify the analysis that
has to be done to create the rules for predicting the children
of'aroot URL or predicting the response of a child URL. An
additional analysis in various alternative embodiments that
is not restricted to template matches may discover other
useful patterns to make these predictions. In certain embodi-
ments, the extra analysis at the cost of system processing
resources may have value, but in other embodiments, but
this addition may not justify the extra processing complex-
ity. In certain embodiments, the number of templates needs
to be small relative to the number of sample URLs. If a web
application involved with a particular web page transaction
or set of web page transactions uses a large number of
templates, then the restriction to evaluating within template
matches may reduce the number of samples so that the
predictions are less reliable for speculative prefetching.

One potential tokenization scheme according to one non-
limiting embodiment of the present innovations follows the
standard RFC1738. The protocol, hostname, path compo-
nents, and query arguments are extracted from the URL.
Each host name may be evaluated independently. The path
components may be assigned keys based on their position:
folderl, folder2, . . . folderN, ending with the filename
including any extension.

The next step is to identify key value pairs. The standard
tokenization uses ‘&’, ‘;> or ‘\’ to separate the key/value
pairs and uses a ‘=" to separate the key and value, such as:
http://ad.doubleclick.net/adj/lj.homepage/loggedout;a=1;
r=0;w=0;c=se;pt=se;sz=236x90;pos=t;tile=2
http://ar.voicefive.com/bmx3/

broker.pli?pid=p68422230&PRAd=1858468& AR _C=3970715

http://rl.ace.advertising.com/site=690966/size=728090/
u=2/hr=13/h1=0/c=2/scres=>5/tile=1/{=2/r=1

In alternative embodiments, the system may analyze
information from one or more URLs associated with a given
host to find alternative or non-standard tokenization schemes
to identify key/value pairs for that host.

The key for each key\value pair is considered part of the
template, so that

HostNamel|Folderl|Folder2|Filenamelsize= . . . Itile=. . .
is a different template from
HostName|Folderl |Folder2|Filenamelsize= . . . |hr=".

where “size”, “tile”, and “hr” are all key names. However,
for folders, the key is just Folderl or Folder2 and the actual

US 9,456,050 B1

19

name in the field may be considered a value and not part of
the template. This is because web applications sometimes
use the “folders” in the path as query values. For similar
reasons, FileName may also be used as the key for that field
and the string in that field will be considered as the value and
not as part of the template.

This embodiment of a template matching method may
creates a template key, such as a uint64 key, describing the
template for a URL. The template keys can then be used to
look up the models and data when processing a new URL for
a known host. URLs for each host name are processed
independently. In a distributed global processing system, the
hash of the hostname can be used to select the server to
process a URL when multiple proxy servers are configured
to share information as described above. Such an embodi-
ment has the benefit of enabling parallel processing without
duplicating resources, since the hash sorting enables each
server to operate using a specific subset of data traffic.

In one potential embodiment described below, the system
requires all fields to be present, but does not require named
fields to be in order. In other alternative embodiments,
various fields may be absent, or the system may require
fields to be named in order. In the embodiment where all
fields are present but not in order, the URLs:
http://ad.doubleclick.net/adj/2014;a=1;r=0
and
http://ad.doubleclick.net/ad}/2122;r=11;a=97
have the same template, but these would be different because
number of fields has changed:
http://ad.doubleclick.net/adj/2014;a=1;r=0
http://ad.doubleclick.net/2014;a=1:;r=0.

The order-independence for query keys can be achieved
by sorting the query keys before creating the template key,
or by using an algorithm for generating the template key that
has the transitive property.

One potential embodiment may involve requiring all
fields to be present. This simplifies the processing, but may
miss many common cases not missed by other potential
embodiments where all fields are not required to be present.
Child URLs may be assembled by the browser by scripts that
only add key/value pairs when a particular value such as a
cookie is present. A long query with many pairs may differ
only because an insignificant field is omitted. This may
require two independent analyses to be run, where each
operates with only part of the samples. Further alternative
embodiments may examine the templates for each host and
look for templates that should be combined. A translation
table may then convert the template keys that should be
modeled together into a common key for combined tem-
plates.

The child URLs that may be requested when a root page
is downloaded may depend on values provided in the HTTP
header other than the URL. Adding key/value fields into the
template for the header data incorporates this data into the
models. One of the most influential HTTP fields is the
UserAgent, as web sites often supply different content to
different agents. Other directives such as HTTP version,
encodings accepted, etc. can also affect the child URLs that
need to be prefetched. In certain embodiments, such stan-
dard directives may be excluded, however, other embodi-
ments may deal with such standard directives by including
them as default fields with every template. In such embodi-
ments if the directive is not included in the HTTP header, its
value may be entered into the template as NULL. The same
techniques used to correlate child requests with other tem-
plate fields may then be used to deal with the directives.

25

30

40

45

50

20

Cookies may be complex header fields, which can also
effect the child URLs that are ultimately requested as part of
the web page transaction. Cookies therefore may have an
influence on parameters and object correlations in a
prefetching system according to the present innovations.
Creating individual key/value pairs for each cookie name/
value pair in the request may function in one potential
embodiment to provide a straightforward means of the
analysis of correlations between specific cookies and the
URLSs which are subsequently requested. However, since the
storage and attachment of cookies can inconsistent, creating
different templates for each combination of cookies would
fragment the templates: and a large number of templates for
each URL may result. Therefore, in one potential embodi-
ment, the system may create implied fields for all cookies
names ever associated with the template. If a new cookie
name appears in a request, it is added to this list. Requests
that do not include this cookie in such embodiments may
have a value of NULL for the appropriate key.

In one additional embodiment, a structure may be created
to deal with a relationship between cookies and folders. The
standardized HTTP specification provides rules that can
associate cookies with folders, so that different cookies can
be placed in different folders. Such and embodiment may
include a template structure that treats folder names as
values, so that different folder names are part of the same
template. All cookies in such an embodiment will appear in
a single template. This will not impact the ability of the
system to determine the children to prefetch: if a folder name
is significant, its value will control the selection of children.

According to certain non-limiting embodiments of the
present innovations, the identification of child URLs to
prefetch for a URL template may based on bins as described
above. A bin may be defined by a set of specific values for
some of the fields in the URL template. For each bin, a set
of children may be defined that will be prefetched when a
URL matching the bin value is encountered. The probability
of individual children being requested in such an embodi-
ment may be a function of whether they were requested for
root pages matching this bin’s values. These probabilities
may then be adjusted such that probabilities increase for hits
and decrease for fails, as described above. In various alter-
native embodiments, multiple other parameters and system
resource considerations may be included in prefetch deci-
sion-making processes.

When a new child URL is encountered, it may be assigned
by default to a bin that includes all fields in the model where
the bin values are those of the root URL instance responsible
for the download. As the same child URL is seen again, it
may be moved to a bin defined by only a subset of the fields.
This generalization process allows children to be prefetched
for root URLSs that have never been seen before, but where
some of the fields match bin templates that are known to
result in successfully prefetched items. In certain embodi-
ments, child URLs in the bin list may be masked to remove
dynamic elements, and then the masked values are replaced
with values specific to a particular download of the root.
This may enable to system to calculate dynamic values, in
certain instances, so that objects associated with the
dynamic values may be prefetched. In other embodiments,
dynamic values may simply be associated with objects that
are not prefetchable, and the system may account for this by
identifying expected objects that are not prefetchable.

FIG. 6, then, provides an overview of how the bin models
are created and updated. The processing of each child
depends on an identified result in step 605 of whether it was

US 9,456,050 B1

21

a hit, fail, or miss as reported by a proxy server at the
conclusion of a web page transaction

If the child is identified as a hit in step 610, an associated
hit count in the child origin model may be incremented in
step 612. Then its hit count in the bin entry is incremented.
The location of the bin entry may be supplied in the report
from a proxy server, which receives this value when the root
request model was generated as discussed above. As a result
of this increase in the hit count, the prefetch probability for
this child will usually be increased the next time a root
matching this bin template is encountered.

A system according to the present invention may encoun-
ter dynamic URLs, where a child URL changes for each
download. Certain embodiments may attempt to predict the
dynamic portion of an anticipated child URL. Such attempts
to prefetch URLs by predicting the dynamic portion may be
incorporated into a child origin model that creates dynamic
fields and places them in masked values in a child template
as described below.

If the child was identified as associated with a fail in step
630, the missed children from the download are checked to
see if any matches the child template that failed. If so, this
indicates that the correct masked URL was prefetched, so the
hit count can be incremented at step 634 in the same way as
for a hit. A problem, however, may be identified in that the
masked values were not correctly replaced by dynamic data,
so a fail will be recorded in step 637 in the child origin
model which was used to fill in the dynamic fields. When a
dynamic field must be generated by the child origin model,
the probability of the URL being requested is multiplied by
the probability that the origin model has used the correct
value, so the overall impact of this fail will be a reduction
in the prefetch probability for this child in future downloads.
If none of the missed items matched the template of the
failed URL, then the bin model was incorrect and the fail
count is incremented at step 635. This will also decrease the
prefetch probability for that child in subsequent downloads.

In step 620 a miss may be identified for a child URL that
was requested by an application or user as part of the web
page transaction, but not prefetched. The same special case
of'errors in filling in the dynamic fields discussed above may
also apply to this step. Otherwise, this URL may be treated
as a new entry with new associated templates created. A
model may have already been generated for the URL
template of the child based on its use as a child in other bins,
other templates, or other domains. If so, the masked URL
will be entered into the model at step 624. When a new entry
is added to the model, it may be placed into a default bin,
which may be the most specific bin possible such that all
fields in a subsequent download have the same values.

In certain embodiments, if no child model exists, the URL
can be added in step 625 to the same default bin as above,
but a backpointer may be kept to this entry in case a model
for this child URL is subsequently developed. When that
occurs, all instances of the unmasked child in all bins can be
replaced with the masked value, which will allow the
dynamic fields of the child URL to be synthesized correctly.

In alternate embodiments, additional generalization
analysis may be done at the first identification of the new
entry to identify subsequent downloads that may be gener-
alized to the new object. When a new instance of this child
URL is added to the default bin, the bin may be checked for
previous instances of this child URL to see if any general-
izations are possible. “Generalization” therefore as dis-
cussed here refers to using a bin that does not care about one
or more of the values in the root URL fields. For example,
the value of an ID in the root URL may have no impact on

10

15

20

25

30

35

40

45

50

55

60

65

22

the children that will be requested. If generalization is
possible, the child URL will be moved from the default bin
to the more general one, so that the child will be requested
for any root URL that has the values in the bin template.
Greater details on how this generalization can be imple-
mented in real time in certain embodiments is discussed
below.

In certain embodiments, the goal of generalization is to
identify a subset of fields in the root URL that are respon-
sible for a particular child being requested. In addition to
identifying a bin, this may also involve a need to determine
the probability of that child being requested when a root
matching that bin template is downloaded.

In certain embodiments, such a match may be developed
over time based on a statistical correlation from observing
hits, misses, and fails for a bin template. In alternative
embodiments children may be moved from the default bin to
generalized bins on a small amount of information. If the bin
selection was too aggressive or generalized to quickly, the
child will quickly encounter failures and be removed from
the bin. In such circumstances an adjustment may be made
to the object model to prevent repetition of the mistake. If
the child is subsequently requested, it will start back in the
default bin and a new attempt may be made to generalize
upon it. In various embodiments, if the bin selection is too
conservative, other instances of the URL will arrive as
misses in response to template values that were excluded
from the conservative bin. These new missed entries will be
added to the default bin and a new attempt at generalization
will be attempted. This attempt will have information about
the other bin entries for this child, and may add the entry to
a new bin that is a superset of the old. Selection on how
quickly to move objects to generalized bins may therefore be
based on available resources and system structures, and the
costs associated with prefetching objects that are not sub-
sequently used. If system resources are limited and costs are
high, the system may generalize more slowly to conserve
resources.

FIG. 7 illustrates one potential view of how a multimap
can be used to add a child URL to a bin. The child URL
multimap of FIG. 7 is a digest of the child URL that was
reported as a miss by a proxy server. The multimap is
presented here for illustrative purposes to provide a clear
explanation of one potential embodiment of a bin structure,
and should not be interpreted as limiting. The payload
structure described in this embodiment includes the values
for each of the fields. All entries have the same number of
fields, as they are all generated from the same root template
as described above. For fast calculation, integer digests of
the field values can be used instead of strings. When the
highlighted new entry arrives with key value=X, it may be
discovered that a previous entry exists, and the roots respon-
sible for the entries have the same values for fields A, B, and
C.

Such a pair wise method may try to generalize from this
single pair of roots by assuming that only consequential
fields are the ones in common, so this child URL may be
added to a bin defined by this set of values for A, B, & C.
This child URL will be prefetched from any subsequent root
matching these three values, regardless of the values of the
inconsequential fields D & E for this type of embodiment.

A bin count may describe how many requests for this bin
have occurred since time T. As described above with respect
to FIG. 7, a bin counts can report how many entries have
been received for the bin including those values of A, B, C
since the earliest child with URL value=X was received. In
FIG. 7, There are two roots that requested this child X. If

US 9,456,050 B1

23

these were the only entries in the bin ABC, then the
generalization is acceptable, and a prefetch of child X would
have a hit rate of 100%. Alternatively, if there were 100 roots
reported with entries matching ABC during that time, then
a hit rate for this model would be only 2%. This hit rate for
children within a bin maps closely hews to the probability
value returned to the prefetcher for a child. The actual
probability will be lower than the hit rate. There may have
been 100% hits in the past, but the item might not be
requested by the browser or may no longer be part of the
page, or the web page may change.

In certain embodiments, then, a bin count may be imple-
mented using a circular buffer containing timestamps when
the root was requested. A sorted list can be used to find how
many entries have been received since any arbitrary time T.

In additional embodiments, a bin count may also or
alternatively be tracked once a bin is created. In the example
of FIG. 7 again, the combination of ABC values for the bin
may already have been used for other child URLs, so there
may be a count for the bin that can be used to test whether
to add child X to that bin. If this is a new bin, then it will not
be possible to know the hit rate in advance, but the system
may start using the model and then respond to the success
rate that is actually achieved.

Various embodiments of the present innovations may deal
with low hit rates in different ways. In one potential embodi-
ment, a low hit rate may have two causes. The first is when
the bin model with the low hit rate failed to include a
consequential field. A field may be assumed to be inconse-
quential when it had multiple values in the instances where
the child URL was requested, but it is also possible that
several values in that field will produce that child URL, but
other values will cause a different child to be requested. In
the example of FIG. 7, it is possible that a value in field D
of'either 42 or 43 will cause child X to be prefetched, but any
other value will not. In such a case, the correct solution
would be to define 2 bins that have the common ABC, but
different required values for D. In this case, the hit rate may
be boosted by improving our model as described above.

In addition to the above described low hit rate cause in the
embodiment being discussed, a low hit rate can also be
caused by randomly varying content. For example, the web
server or content server may have 50 ads on a carousel, and
randomly picks one each time each time it sees a root request
matching those values for ABC. The ABC bin is the opti-
mum model for such a situation, but the hit rate will never
be better than 2%.

It the low hit rate is detected by the bin counts before child
X is added to the bin, one potential embodiment can delay
adding child X to the bin until we have more samples. If in
the example, D was consequential and 42 was a value that
triggered child X, the multimap would soon receive data for
multiple instances of 42 for D. In that case, there would then
exist a model ABCD to test. If the bin defined by ABCD had
a high hit ratio, then the system may add child X to that bin.
Children of roots with other values of D would continue to
be treated as misses, but if D=43 also produced child X, the
system would eventually discover this and add another
ABCD bin where D=43.

If the bin ABC did not exist prior to this, the hit count will
not be known in advance. In that case, the bin can be created
and child X can be added. If fails are detected, the child can
be removed from the bin, but the system may continue to
track the bin count. Child X may go back to the default bin
and a new model may be created from the multimap as
described above, and the bin count will be available to make
improved decisions.

5

10

15

20

25

30

35

40

45

55

60

65

24

If the multimap acquires a large number of entries for
child X without finding a useful correlation for D or E, then
the system may reach a decision threshold that this is
randomly varying content. The system may then look at the
hit ratio and see if the probability of X is high enough to
justity a prefetch request. In other alternative embodiments,
the object may simply be given a low prefetch score and
placed in an accumulator to be prefetched if low cost
resources are available for the purpose. If the object is
identified as acceptable for prefetching, the system may add
X to the bin, with a note or tag that indicates that X is only
expected for a lower probability, so that it should not be
removed from the bin unless the hit rate drops below an
expected level.

As discussed above, an initial model may have a correct-
able problem where the system may have an initial state
where consequential fields are treated as inconsequential. In
certain embodiments, a preliminary model can also have the
opposite problem: it may have decided that inconsequential
fields are consequential. In this case, the system may achieve
a high hit ratio for this child in the assigned bin, but the
system will also soon see more misses where the same child
URL shows up from a root that matches some but not all of
the consequential fields.

FIG. 8 shows how this problem may be solved by tracking
the bin assignments in a multimap. After child X was added
to a bin defined by a set of ABC values, a root template entry
is added to the map. If a new root is missed by this model
because it had a different value for a consequential field,
such as C=31 in the figure, then X can be added to a bin
defined by only the AB values.

If the ABC model had previously had a high hit rate, it
could be temporarily retained as shown in the figure. When
the children of a new root are being collected, the highest
probability for X would be used. If it matched the full ABC
template, it might receive a higher probability than if it only
matched AB. However, if the hit rate for AB is the same as
for ABC, then C is inconsequential for X, and the entry for
X can be dropped from bin ABC.

As discussed briefly above, in certain embodiments a
child URL that is a potential candidate for prefetching may
include dynamic fields or parameters. In certain web page
transactions, these fields may not be synthesizable, and so
the child URL may not be prefetched. In other web page
transactions, these fields may be calculated or synthesized
from a large variety of sources. In the models above, the
dynamic portions that are known to be synthesizable are
masked as part of the modeling operations, and then may be
synthesized during the web page transaction when the
appropriate information becomes available to the system.
This improves the ability of the prefetch to anticipate the
URLSs that will be requested by the browser, as the values in
the masked fields may be different for each download. If the
fields are synthesized correctly, the prefetched URL may
match a browser request even though the URL string has not
previously been seen. The information needed to synthesize
these fields may be based on either child-specific and
root-specific models.

For embodiments utilizing child-specific classification,
the child-specific classification may be based upon all
instances of the child URL template, which may be from
many different root templates, even those from different
proxy servers. The classification may specify whether the
field is dynamic, how often the values change, have changed
in the past, and/or are expected to change in the future, and
the classification may further provide “hints” which function
as information relating to where to find the values needed to

US 9,456,050 B1

25

synthesize the dynamic parameter of the URL. In certain
embodiments, having such a global model may be useful
when the system is building root models as the information
suggests where the system may look for values or how the
system may build models.

For other embodiments utilizing root specific classifica-
tions, the root-specific classification may use information
from a specific root template to identify where values for the
dynamic fields can be found. For example, for a particular
web page transaction a session ID needed for a dynamic
URL parameter might be found in a particular cookie value,
while for a different web page transaction using a different
root template, the session ID needed for a dynamic URL
parameter might only be found by looking at previous
URLs. The root-specific model may provide information on
how to get each dynamic field for each child URL associated
with that root.

In embodiments that attempt to prefetch child URLs with
variable parameters, the goal of the process is to be able to
synthesize the values of fields in the child URLs based on
data which is available either at the time the root is requested
or at an early enough point in the page download that the
prefetching is still beneficial. Some values will be effectively
random, so that the system will never be able to synthesize
the same value that will appear in the browser request.
Knowing that the value is random is also useful, so the
system does not waste time prefetching URLs that will never
match or otherwise adjust the prefetch strategy. The follow-
ing is a description of some potential classifications for
dynamic fields, and methods that may be used in certain
embodiments for handling the various types of dynamic
fields.

In some embodiments, dynamic fields may derive values
supplied from cookies. A unique value appearing in a URL
from the browser may have been supplied via a HTTP set
cookie directive on the response to a different request URL
that was part of the same page download. When the root
page is updated, a list of the cookies that were set in the
download can be provided so that it is available for this
purpose when the model of the template for each child URL
is updated. In order to take advantage of this data, the
prefetch request may need to be delayed until the object
setting the cookie is downloaded. In certain embodiments,
such a system may provide a benefit to a system that does not
want to use cookie values that are out of date and may
produce the wrong response.

In some embodiments, dynamic fields may derive values
supplied from web text. A unique value appearing in a URL
may have been supplied in the web text data such as HTML,
JavaScript, CSS, or other such formats in a way that could
be discovered by the prefetch scanner. In some cases, a
standard prefetch text parsing scanner may always find the
full Universal Resource Locator (URL). The root page
results may indicate which URLs were found by the scanner
and in which web text files. A tracking model can then
incorporate this data into the prefetch strategy. For example,
a fresh copy of the web text file might be downloaded in
embodiments where the object is not subject to an If
Modified Since command and scanned even if we expect the
item to be served from browser cache. Also, the tracker may
be structured to wait for the scanner rather than use a
low-probability rule for fields in the URL.

If a dynamic field affects many child URLs for popular
root templates and no effective rules are found to synthesize
it, then it might be beneficial to run a special scan of the web
text files. When the root page is requested, the tracker can
specify that it would like more information about a particu-

10

15

20

25

30

35

40

45

50

55

60

65

26

lar dynamic field that has been a problem in previous
downloads of this root template. The tracker module can
provide a template to identify this field in the child URLs
that will be requested by the browser, as these children are
not currently prefetchable due to this problematic field.

In this case, the prefetch scanner or other similar func-
tional module may save copies of all web text files when
downloading the root. In various alternative embodiments,
the analyzer may issue requests for URLs when it needs to
run this analysis. This accomplishes the same goal, without
requiring the system to collect the web text during the
prefetching. When the download is complete, the scanner
may use the template to identify the current value of this
dynamic field in the child URLs for this web page transac-
tion, and then scan for this value in all the web text files that
were downloaded before the first child URL containing this
value was requested. If a match is found, the preceding bytes
may be scanned to see if there might be a Java operator such
as “var Sessionld=" that could be used to find this value in
future downloads of the root. The bytes after the value may
also be recorded so that the system may find the correct end
to a string. The next time this root page is downloaded, the
tracker can supply this prefix string and end delimiter to the
scanner to use during this download. The scanner adds this
to the list of tokens for which it scans when processing the
web text file where the value is expected. When it finds this
value, it uses it to complete the synthesis of the child URL(s)
that depend on this dynamic value and to prefetch those
children.

In certain embodiments then, this procedure can thus
allow the scanner to be used in constructing URLs contain-
ing dynamic fields even though the full URL does not appear
in the scanned text file. The system may still miss cases
where the entire field value does not appear as a literal in the
web text, but may capture some cases that currently elude
both systems without such an embodiment.

A number of specific embodiments will now be described
which may enable certain systems to synthesize the dynamic
field values when a child URL with the same template is
requested in different downloads of the root. This may
enable certain URLs which have not previously been seen
by a system to be prefetched by the system, and thus to
improve overall page load performance. Generally, this
allows a system that is observing web transactions from a
proxy server, client system, or browser integrated prefetch-
ing system to expand the number of child objects that may
be prefetched by observing the web transactions, extracting
parameters or fields from the web transaction and matching
them with a child HTTP request. In subsequent observed
transactions, when the same parameter, field, or key value
pair, to name a few potential non-limiting examples, are
observed, the system can predict the child HTTP request by
utilizing the matching and the at least one parameter
extracted from the second web page transaction.

In some embodiments, dynamic fields may derive values
supplied from another URL. While a dynamic parameter
value may be unique to the current template, it may have
been appeared in another URL that was part of the same
page download. In certain embodiments, the URL may even
be from a separate web page download or transaction. When
a template for a child URL is being updated, the modeler can
have access to the list of all child URLs relevant for that
download and the order in which they were requested. The
prefetch of URLs needing that field can be delayed until a
URL containing that field is requested or identified. For
example, when the HTML or a JavaScript is parsed, the
scanner might identify a URL to prefetch that contains a

US 9,456,050 B1

27

field that has the correct value. URLs from templates that
contain that field can then be prefetched. In some cases, the
system may wait on a browser request for the template that
contains the first instance of the field, and then prefetch the
objects that need this value. In certain embodiments, a
special case may occur when an entire URL appears as part
of a previous URL, which occurs in some redirection
schemes. In such an embodiment, the entire URL may be
treated as a dynamic parameter and prefetched when the
parameter becomes available.

In some embodiments, dynamic fields may derive values
supplied from session specific data. Session specific data
refers to a value that is used for multiple page downloads by
a single client, such as when a user logs onto a web site that
creates a shopping cart that is maintained across multiple
page requests or multiple web page transactions that are
considered part of a single session. Since a session specific
value appears across multiple requests, the client session
may be able to find this value from a field in an earlier
request. This allows the synthesized URL to be prefetched
immediately when the root is requested.

In some embodiments, dynamic fields may derive values
supplied from user specific data. This may operate in a
fashion similar to session specific information as discussed
above. A user specific value may appear in multiple down-
loads by a single client. The only difference is that with user
specific data the ID or relevant data may be more persistent,
so that an ID value from a previous day could be used in a
new prefetch request. For the modeler to detect these cases,
it needs to have access to a long-term history for the
individual user. This might involve data from a proxy server
net session database. In alternate embodiments, the prefetch-
ing system may expand on web transaction models to
incorporate a user-specific indexing of the global database.

In some embodiments, dynamic fields may derive values
supplied from configuration specific data. A configuration
specific value may have different values for different groups
of users, but each user may have the same value over a
period of time when the user does not change user system
configurations. The bin children model described above may
handle configuration values that are specified in the HTTP
headers or cookies. Those configuration parameters may be
treated as key/value pairs, which may be discovered to be
consequential, and a different set of child URLs will be
produced that differ only by this ‘configuration specific’
value. Some configuration settings may not be discoverable
in the HTTP headers, but rather are generated when the
browser uses Java scripts or other parameters to query its
local environment for parameters such as display resolution,
support for plug-ins, or other user configurations. The han-
dling of this field may thus be similar to the user specific
fields. The primary difference in many embodiments is that
it might be possible to predict the value even when no
history is available for this value for this user. In such an
embodiment of the system, some correlations might be
established between groups of users and the value of this
field, and the value for this user be synthesized based on
membership in such a group.

In some embodiments, dynamic fields may derive values
supplied from a date method. Certain embodiments of the
system may include a detector for this detecting such
dynamic fields based on comparing the field value with the
date value returned by the operating system. The date
method is a randomizer used for randomizing URLs, and
detecting its use can improve system performance. In some
embodiments, this is determined using a clock from a user
modem, where the optimizer does not share the same system

10

15

20

25

30

35

40

45

50

55

60

65

28

clock as the browser. If a date() field can be positively
identified, it might be marked as inconsequential to both
uploads and downloads, as the synthesized date is equally
valid as the one synthesized by the browser.

In some embodiments, dynamic fields may derive values
supplied from a rotating value. A rotating value typically has
a finite set of values that appear across all users at various
frequencies, but can not otherwise be correlated with other
fields, configurations, or other elements of the model. In
predicting the children of a root. A system may assign
probabilities to each value and prefetch multiple URLs if the
probabilities are large enough to justify the prefetch
resources. In such an embodiment, the extinction probabili-
ties could be modified, so that a Fail does not terminate
prefetch attempts as readily as it might with static URLSs.

In some embodiments, dynamic fields may derive values
supplied from a random browser number. In such embodi-
ments, the random browser number may be an integer that
does not appear in any field of any URL from any template
for this host. In addition to the uniqueness of the values, the
use of this method can be detected by the values of indi-
vidual digits, which will be evenly distributed across all
possible values. Web page analysis at the proxy server of
web page transactions by looking for cases where the key
name is conveniently labeled like “rand” may provide a
trigger to perform an analysis for such an dynamic field. In
other embodiments, the uniqueness across large sample sets
and the digit variance patterns form a more reliable detection
within the proxy server. As with the date() rand() param-
eters in dynamic URLs, values that are positively identified
as using a random browser number might be marked as
inconsequential in both directions in certain embodiments. A
value for a field may seem random to all the tests in the
prefetching system such that it changes for each download
to an unpredictable value and also doesn’t meet the profile
suggesting it is coming from the rand() method, so the
synthesizer has no idea what to put there. For parameters in
URLSs that are random beyond the ability of the prefetching
system to detect, however, the system may simple label the
dynamic child as not prefetchable.

The purpose of the above described classifications is to be
able to synthesize the dynamic field values when a child
URL with the same template is requested in different down-
loads of the root. In such embodiments, the first step is to
match the templates of each child against the templates of
children during previous downloads. This uses the same
template matching strategy used to identify root pages
described above.

In some cases, more than one child URL will have the

same template, such as
cnn.com\ads\junkMail ?sessionld=34534 and
cnn.com\moreAds\junkCitrl.js?sessionld=37865. Initially,

the system may only develop a single model for the template
and assume that every use of this template will follow the
same procedures for generating the value for “session 1d”. In
alternative embodiments a system may use different classi-
fication models based on some of the other field values, such
as for Folderl="“ads” versus Folderl=“moreAds”. In some
embodiments, however, the default model is to assume that
a field is static, which means it probably has the same value
as in previous instances of URLs for the template. If so, the
classifier may not need to spend resources looking further.
Also, a field that periodically changes to new value, stays at
that value for many downloads, and never returns to the old
value can also be considered as a static value, as the success
rate will be suitably high to justify prefetching using the
known values that are considered static by the system.

US 9,456,050 B1

29

When a field or URL parameter changes dynamically, the
classifier or web page analysis module of a proxy server may
attempt to see whether the parameter matches any of the
types defined above in the discussion of parameter classifi-
cations. If this field has previously been classified and the
classification or origin has been determined, then the value
may be checked against the classification model. If the value
confirms the model, then in certain embodiments the system
may halt further analysis. In alternative embodiments, addi-
tional classification checks and model updates are verified
before expending system resources, such as using network
bandwidth and processing resources to prefetch child URLs
based on this model in response to future requests for the
root URL

If a model for a dynamic field in a child URL is not
available, the system may begin the process of constructing
a model by performing a search to see if the field occurs in
the other places in the web page or other web page trans-
actions, such as fields of other URLs in the same root page
instance, cookies, instances of the same template and field in
previous downloads of the root page by the same user. In
certain embodiments, the proxy server may use a strategy of
creating a map for each download where the key is the field
value and the payload is a rule specifying where the value
appeared. A separate permanent rule map spanning multiple
clients and downloads may have the field name as the key
and the rule as the payload. The download value map may
be used to look up all places the value has occurred in the
target search areas for this web page transaction. For each
match, an entry in the permanent rule map is either added on
first time rule has been seen or updated with, for example,
an increment the count of the number of times this rule was
valid.

In certain embodiments, the value of a rule is based not
just on its statistical probability, which may be defined as a
percentage of times the rule was valid, but also in its
usefulness to the prefetcher. The most useful data is that data
which is available when the root page is requested, such as
fields or cookies in the original root URL as well as data
from previous downloads. Data that requires other children
to be downloaded first may be less useful, but may be the
only way to synthesize fields such as download IDs that
appear in multiple children, as described above. Perfor-
mance benefits may be achieved even if the system must to
wait for the browser to request one of these URLs before the
other URLs may be prefetched.

As discussed above, consequentiality is an important
characteristic of parameters in web page transactions. A
parameter that is consequential has an impact on a subse-
quent object in a web page transaction, and impacts the
ability of a prefetching system to prefetch child objects,
especially if a value of a consequential parameter is not
known. An inconsequential parameter is a value that does
not impact selection of a subsequent object in the web page
transaction. Inconsequential parameters may thus be ignored
when making prefetching decisions. In certain embodiments
of'an improved prefetching system, one of the main goals of
the URL modeling may be to determine the impact of each
template field on the application. For child URLs, two
questions for determining consequentiality are whether a
field affects the response that the application will receive,
known as download consequentiality, and whether the field
is important to the application server, known as upload
consequentiality. For root URLs, the question is how each
field affects the child URLs that will be requested by the
browser when this page is downloaded.

15

20

30

40

45

50

55

30

An example of a download-inconsequential child URL
field is a statistics update to which the server always
responds with the same response packet. The data is mean-
ingful to the web server, so that a URL with the correct value
needs to be uploaded to the server. However, the prefetcher
may be able to improve performance by taking advantage of
the DL-inconsequentiality by serving a response to the
browser without waiting for the response from the web
server.

An example of an upload-inconsequential child URL field
might be a random value inserted into the URIL, as is
common for cache-busting reasons. Since the value is ran-
domly generated each time, replacing it with a synthesized
value in a prefetched request will not affect the application.
The response to the synthetic request can be supplied to a
browser even if the browser request had a different value for
the upload-inconsequential field.

Download-inconsequential child URL fields can be
detected by analysis of the URLs and response checksums,
where checksum refers to any method allows fast checking
of whether two responses are identical. If a field is down-
load-inconsequential, URLs that differ only by this field
always result in identical response checksums. Statistical
methods described below may identify download-inconse-
quential fields and determine whether the model is strong
enough to allow delivery of a cached response without
waiting for a response from the web server.

Upload-inconsequential fields are more difficult to detect,
as the server may derive meaning from a field even if the
value of the field is download-inconsequential. The most
common case is when the URL field is generated by the java
rand() or date() methods. Techniques described below show
how these cases may be identified and how the model
strength may be determined. The optimizer may then use its
own implementation of date() or rand() in synthesizing
requests.

In embodiments where a proxy server has a cached copy
of the response that it expects to receive for a child URL
with download-inconsequential fields, server may imple-
ment prefetch handling is as follows. Initially, the server
optimizer does not prefetch anything. The server optimizer
sends to a client optimizer a URL with the inconsequential
fields masked and the cached response. The client optimizer
provides the cached response if a URL matches this tem-
plate. The client optimizer uploads the browser request URL
to the server optimizer. The server optimizer issues a web
request for the URL. The server optimizer uses the web
server response to update the model at the proxy server, and
finally, the server optimizer does not send the web server
response across the network link, which in some embodi-
ments is a high latency satellite link. In such an embodiment,
the web server will receive the same request as it would
without prefetching, so it does not matter whether any fields
in the URL are upload-consequential.

Conversely, in embodiments when there is no cached
copy, the system embodiments may perform an alternative
analysis. Since a cached copy may not be available if a
download-consequential field is different from previous
requests, the only way to save the round trip time (RTT) is
for the server optimizer to issue a prefetched request for the
URL. If a field is upload-inconsequential, then the server
optimizer can synthesize a value for the prefetch request and
the client optimizer can serve the response to the browser
even if this field is different from the URL requested by the
browser.

If a requested object differs from a prefetched URL only
by download-inconsequential fields, the prefetched response

US 9,456,050 B1

31

can be served to the browser and the RTT will be saved.
However, if those fields are not known to be upload-
inconsequential, a trade-off exists between two options. In
one potential embodiment, the browser URL may be
ignored. The web server received one request for the item as
expected, but the difference in the download-inconsequen-
tial field in the prefetched URL from the browser’s URL
could affect the application in the future in ways not known
to the proxy server when the embodiment ignores the
fields/parameters. In alternative embodiments, a second
request may be uploaded to the web server containing the
browser URL. This insures that the web server obtains the
correct request URL, but now the web server has received 2
requests from a sequence a standard web page transaction
would only include one, and the web server may be
impacted by receiving two requests where the web server
expected one. The extra request may have a worse impact,
such is interfering with the hit count for the object at the web
server, than getting the correct field value.

From the standpoint of the web server or content server,
the second embodiment described just above is identical to
any other prefetch miss. In such an embodiment, the server
receives an incorrect prefetch request followed by the
browser URL. The only difference is that the prefetch benefit
for the client or user was achieved because the mismatched
fields were known to be download-inconsequential. A third
embodiment may use a system method that is not to prefetch
in these cases. In such a third alternative embodiment,
prefetch performance would be poor for service to the client
if misses were never allowed. The selection between these
three embodiments may can be guided by other preferences,
and in certain embodiments may be incorporated as different
options within a single embodiment that are selected with
information such as indicators that the download-inconse-
quential field may also be upload-inconsequential.

The follow one potential embodiment of aspects of the
present innovations related to determination of download
consequentiality. X may represent a result sample which
includes the URL that was requested and the response that
was received. The response can be expressed as RX, which
in may be the value of a checksum of the response data. The
URL can be represented as a series of key/value pairs. The
value for key=i for the URL associated with sample X can
be expressed as V(X.,i). Two URLs X and Y are considered
identical if V(X,1))=V(Y.,i) for all key value pairs.

The impact of a field k might be determined by looking at
pairs of URLs that are identical except for the value of k:
V(X,1)=V(Y,1) for all keys except i=k
V(Xk) I=V(Y.k)

If RX =RY, the field is likely to be consequential, as the
change in the value of k produced a different response. It
could be a coincidence: the content may change over time
and the switch to new content had nothing to do with the
value of k.

Similarly, if RX=RY, the field is likely to be inconsequen-
tial, as the same response was produced even though the
field had different values. A large number of positive
samples are needed to provide the level of certainty required
before a response can be delivered to the browser where the
browser URL differs from the prefetched URL by the value
of k.

One potential non-limiting implementation for running
such a test on a large sample set is to compute a hash value
Hi for all URLs in the sample, where H is a digest of the
values for all fields except i=k. Hi is used as the primary sort
key for the samples. To count the number of consequential
samples, the list can be subsorted by V(x,k), and then by Rx.

10

15

20

25

30

35

40

45

50

55

60

65

32

A count of samples where k was consequential can be
generated by iterating through the sorted list and counting
the number of different values of Rx for each V(x,k) bin. The
number of inconsequential samples can be determined by
using Rx as the second sort key and V(x,k) as the third. This
may simplify counting of the number of cases where Rx was
the same even though V(x,k) was different. This process can
then be repeated so as to check the consequentiality of each
field.

This implementation above, however, may not handle
covariant fields very well. For example, if fields k and j are
both inconsequential, but they both vary for each download,
then we will never detect any inconsequential cases. We
would never find multiple samples where
V(X,1)=V(Y,1) for all keys except i=k
because V(X,)) is always different from V(Y,j). An alterna-
tive embodiment may incorporate a test for covariance on a
small subset of samples, so that the cost of testing multiple
combinations is reduced. Once a candidate list of all incon-
sequential fields is created, it can be tested against the full
sample set. For example, if j and k are the only fields
identified as being inconsequential, the system exclude both
fields from the hash used for the first sort key:
V(X,1)=V(Y,1) for all keys except i=j or i=k

A combined hash can be created for values of the j & k
fields, which can then be used as the secondary sort key. The
counts can then be computed as described above.

The system then may be able to detect inconsequential
fields in URLs for which the responses change over time.
For example, the URL
http://cnn.com/worldPage htm?rand=376485
may change value during the day, producing samples where
both the value of rand and the content have changed, making
the value appear consequential in the previous algorithms.
This result may be avoided by sorting first by the fields
determined to be consequential, such as
fileName=worldPage htm in the example. Then the system
may perform a secondary sort based on the sample time. If
the content is linearly time dependent, multiple copies of the
same response value will appear consecutively, followed by
a new value. The old value will not reappear once it has
become obsolete. Bins can be created for each of these
blocks of consecutive samples with identical response val-
ues, and then subsorted by the inconsequential field values,
such as “rand” in this example. The checks described above
can then be run to see if the rand URL field value is
consequential.

In certain embodiments, the processing speed might be
optimized by combining all samples where both the URLs
and responses are identical. A count can be stored for the
combined samples so that the sample strength in various
tests can reflect all the contributors. In particular, a URL like
cnn.com\images\leftArrow.gif would combine into a single
entry, so that CPU may not be used for sorting or otherwise
processing static URLs.

Additionally, various embodiments of the present inno-
vations may need to respond instantly to new data so as to
detect when a model fails, add new models as new templates
are encountered, and update models when the number of
samples makes the correlation strong enough to use in the
prefetch list decisions.

Embodiments incorporating real-time updates may use a
store for the entries in lists sorted in two ways to verity the
current model. During run time, real time embodiments of
the system may check whether a model has been broken by
identifying new samples that indicate an inconsequential
field in the current model is actually consequential. The

US 9,456,050 B1

33

system may also identify and whether the statistical corre-
lation of the consequentiality is strong enough to use in a
prefetch list. In both cases, the data can be sorted using three
sort keys made up of a hash of all values for URL fields
determined to be consequential, a hash of all values for URL
fields determined to be inconsequential, and response check-
sums.

To detect violations of the current model, the system may
first sort by the hash of the consequential field values. The
system may then subsort by the hash of the inconsequential
values and finally then by the response checksums. As each
new entry is added to the sorted list, the system may check
the values before and after each entry is made to see if the
same inconsequential field values produced different results.
If so, the value may be consequential and a prefetch list may
need to require matches for this field.

To detect affirmations of the current model, embodiments
of the system may reverse the order of the last two subsorts
discussed just above. As each new entry is added to the
sorted list, check the values before and after to see if the new
sample adds a different set of values for the inconsequential
fields that produce the same response as another set. If so,
the model has been strengthened and may be ready for use
by a prefetch list.

In some embodiments, the systems and methods for
dealing with consequentiality require sufficient memory to
store two sets of pointers and the values for the 3 hashes
describe above. If the system uses 64 bit hashes, this requires
~40 bytes per URL. Alternative embodiments of the system
may also include a 3" index sorted by time, so that obsolete
entries can be periodically removed.

In certain embodiments, the detection of inconsequential
fields may only be useful when the system has enough
samples to create a high level of statistical certainty, as
defined within the context of the costs, system resources,
and/or contract limitations provided by the proxy server
service. Consequently, a large number of samples may be
collected and stored before the proxy server may reach a
threshold to analyze the data. When that threshold is
reached, the analysis can be run as described above to
determine consequentiality. In certain embodiments, tempo-
rary sorting for this analysis might be done using a fast radix
sort. If the preliminary analysis and model finds one or more
fields to be inconsequential, the maps can be created as
needed to use inconsequential parameters in real-time analy-
sis and operation of the service

FIG. 9, then may provide a basic outline for every HTTP
request or HTTP response moving through a proxy server
with an improved prefetching system. In step S900, the
system receives web page transaction data. An analysis
module such as web transaction tracking module 248, in
conjunction with parsers that may be internal or external to
the module, such as parsers 244 and 216, all of FIG. 2, may
perform analysis in step S910. Such analysis may be per-
formed on any portion of a web page transaction, including
root requests and responses, and child requests and
responses. When the data has been parsed, the analysis in
step S910 may also determine if any, all, or none of the
parameters discovered in parsing have been seen previously.
In step S920, if no parameters have been seen previously, the
system may simply establish a new model, as described
above with respect to the Netflix.com™ example, with bins
established for various parameters or the entire data portion.
In step S930, for web transaction data where only certain
parameters have been seen before, the proxy server may
check stored history data for a generalized model that

10

15

20

25

30

35

40

45

50

55

60

34

matches the parameters and host. Such a generalization
technique is described above, along with various character-
istic models that may apply.

In step S940, for web page transactions that have been
seen before, the system may check the validity of the current
model and prefetch with applicable models. For web trans-
action data that is partially or fully matched, the system may
also include a check for parameters that need to be synthe-
sized. The system may search for required synthesis data, or
wait for the required data. A model for the parameters or
transaction may include instructions for the system to either
fetch or wait for the required data. Finally, after the web
page transaction is complete, the system will have data for
all children that were requested as part of the original root
request from the client. The system may then perform
analysis for all data, checking for missed associations with
models, checking new models for data not previously seen
to see if any generalized models may be created or possible
in the future, and updating statistics for hits, misses, and
fails, as described above in detail for various embodiments.

FIGS. 12 and 13 show hybrid flow diagrams for one
potential implementation according to the present innova-
tions that also shows the location where steps in a process
flow are performed. In FIGS. 12 and 13, the system includes
a user application that may be operating on a client such as
client 105 of FIG. 1, a client side optimizer such as proxy
client 110 of FIG. 1, a server side optimizer that may run on
proxy server such as proxy serve 120 of FIG. 1, and a
content server such as content server 130 of FIG. 1.

FIG. 12 shows a process flow for a web page transaction
where the system has limited or no prior information for the
web page request, and where the system uses the real user
data to create a correlation for use in future requests for the
web page. In step 1, the user application requests a web
page. Such a web page is typically requested in direct
response to a user input or selection, such as a mouse click
or key entry, but may also, in certain embodiments, be
responsive to a macro or time based selection operated by
the application. The request is sent via the client side
optimizer, and in step 2, the system confirms that the
requested web page has not been prefetched, and an upload
request is sent to the server-side optimizer. In step 3, the
upload request is received at the server-side optimizer, and
is further reconveyed to the content server. In step 4, the
content server responds to the web page request by com-
municating the response back to the server-side optimizer. In
step 5, the server-side optimizer receives the response, and
in step 6, the response is conveyed to the client. In step 7,
the response is received at the client-side optimizer, and
communicated to the user application. The response to the
application request is received by the application in step 8.

In step 9, any child requests that are embedded in the
initial response are identified by the user application, and the
user application requests the child objects. Just as with the
initial request, in step 10 the objects are verified not to be
prefetched, and the request is sent to the server-side opti-
mizer. In step 11, the request is communicated from the
server-side optimizer to the content server. Unlike the pre-
vious request described in steps 1 through 8, however, in
step 12, the system has prior information. In step 12, then,
the system analyzes the initial request for a parameter that
may be associated with one or more subsequent child
requests. This may be done through the creation of an origin
model as previously described, or through any other func-
tional classification system or structure that associates the
parameter with the child. Additionally, step 12 may be
performed at any point in time relative to the subsequent

US 9,456,050 B1

35

steps. Step 12 may analyze and create a correlation imme-
diately upon receipt of the child request, or at any later time
when additionally processing resources are available or
system use of the server-side optimizer is lower. Further, in
various alternative embodiments, this analysis may be per-
formed at a different server from the server-side optimizer,
at the client, or at any other acceptable computing device.
Finally, in steps 13 through 17, the child response is gen-
erated and communicated from the content server through
the system to the user application.

Continuing with a description of the same embodiment
described in FIG. 12, FIG. 13 describes this non-limiting
embodiment when a later request for the same web page is
made. The request may be made by a different user, after a
prefetched copy has been removed from a prefetch system
for storage limitations, or when the system has not
prefetched a copy for any reason and needs a new copy from
the content server. In steps 1-3, the initial request is made
just as in FIG. 12. However, when the request is received by
the server-side optimizer, the parameter from step 12 of FIG.
12 is identified, along with the associated child. The initial
application request then continues in steps 4 through 8 in the
same manner as in FIG. 12. However, due to the identifi-
cation of the parameter and associated child in step 20, the
system may then prefetch an anticipated child of the initial
application request.

A variety of acceptable prefetch steps and methods may
be used to prefetch the generated child. In FIG. 13, the
prefetching includes sending an updated prefetch list to the
client side optimizer in step 21 where the entry is added to
the prefetch list in step 22 so that a later request for the child
will be identified as having been prefetched. The server-side
optimizer then requests the child object in step 23. The child
is generated by the content server in step 24, and commu-
nicated to the client-side optimizer in steps 25 through 27.
In step 27, the child is stored in the client-side optimizer for
use in responding to a subsequent request.

FIG. 13 continues in steps 9 and 29 through 32 to describe
a “hit”, where the child is requested in step 9, the client-side
optimizer serves the prefetched generated child response in
step 29 and the user application receives it in step 30, and an
updated to a data model occurs in steps 31 and 32. If no
related child was later requested, or the parameter generated
the wrong child and a different child request was made
instead, the object stored in step 27 will not be sent to the
user application, and an update will still occur indicating the
miss or fail to the server-side optimizer. The process may
then repeat and continue, where the model for identifying
parameters and associated children is updated, and the
system operates with various combinations of requests,
prefetched responses, and generated responses.

In various embodiments that function in accordance with
the innovations presented herein, they system may create
models and record tracking data for “root objects” or ini-
tially selected objects. A root page or object is the object that
the user actually requested or the object identified by the
system as an initial object for a web page transaction. A root
is therefore distinguished from “child objects™ or children of
a root object, which are the images, style sheets, scripts, and
other files that the application requests in order to display or
otherwise interact with the root.

Using the techniques to be described herein, a system may
perform an analysis to determine whether a communication
that is part of a web page transaction is associated with a root
or a object. If the response is a child, then it also needs to
determine what root page is responsible for the child. The
optimizers or proxy server is sometimes a network-level

10

30

35

40

45

55

36

devices with no direct knowledge of the user actions.
Instead, the optimizers see a stream of HTTP requests and
responses that may involve objects from multiple pages
arriving at overlapped intervals. In a proxy server that is
observing many different communications occurring
between users and content servers, the root and associated
child objects may be difficult to identify.

Although in systems functioning with a proxy client or a
prefetching module integrated with a web browser that
initiated the web page transaction, direct information may be
used to identify a root and the children, this information may
still be useful for categorizing and structuring history data
for future use by the system. Additionally, certain embodi-
ments may use both proxy server and client based analysis
systems, where a proxy server may perform a analysis of a
communication to determine a root, and that analysis may be
confirmed later by a similar analysis from a web browser
that has access to additional information not available in the
Proxy server.

Certain systems and methods for identifying relationships
between objects within a web page transaction as root and
child objects are described in U.S. application Ser. No.
13/089,250 entitled “WEB HIERARCH MODELING”
which is hereby incorporated by references for all purposes.

FIGS. 14 and 15 describe additional methods for analyz-
ing an HTTP communication to determine the identity of the
communication within a web page transaction. As described
above, the analysis described may be performed by a proxy
server, a proxy client, or a web browser with a prefetching
module in various alternative embodiments. In scan input
step 1010 at least a portion of an HTTP response or file being
analyzed by the system is checked to determine the type of
data in the response, and to perform an initial history check
against a tracking system. In one potential embodiment, the
scan input 1010 checks for a title and HTML tags that may
be useful in determining whether or not the page is a root
page. If the file includes scannable text, such as HTML, it is
passed to start page 1012. At start page 1012, portions of the
file may be scanned, or the entire file may be scanned to
identify information that may identify the file as a root
object. In certain circumstances, scan results may be have a
result which the system uses to automatically set the result
as root object. If such a result is found in any previous step,
force root 1014 automatically passes the object to start root
node 1040 where the object is identified as a root and an
analysis node is created or updated for the object. Force root
1014 logic may additionally be used to account for errors or
exceptions to system functionality that causes problems in
operation of the system or in user performance.

If a force root 1014 status is not identified, the object may
be passed to root tracking 1016, which may interact with a
tracking database or other transaction modeling logic mod-
ules to identify whether the object should be set as a root.
Root referrer 1018 may check a referrer tag for tracking
information, and may further use the root tracking 1014 and
start page 1012 results for providing feedback to the system
to identify future children as belonging to an identified root,
or providing additional details for using in tracking of
additional objects.

In root decision 1020, the system uses all previously
gained information from scanning an tracking to determine
whether the object is a root. If the object is identified as a
root, start root node 1040 may be used to initiate data
collection and prefetching for the root.

If root decision 1020 determines the object is not a root,
the object is set as a child, and the system attempts to
identify a root for this object. Additional interaction with the

US 9,456,050 B1

37

other steps in FIG. 14 may use tracking and root referring to
identify the root or initial object that this child object is to
be associated with. Further, tracking information may be
created for use with a root node and root tracking for use in
subsequent observations of this web page transaction.

Returning not to scan input 1010, if the initial scan
determines that the object or file does not include scan able
text, an analysis is done to determine if the object is a root.
Typically, non-scannable files are not roots, but are children
of objects that include scannable text such as HTML. In
some circumstances, a user may select a picture or streaming
movie file, and the file may be sent directly to the user with
no additional text or instruction from the content server.
When an image file, for example, is sent to a user in response
to such a selection, non-scannable root check 1022 may
identify such a circumstance, and use force root 1014 to
identify the image file as a root with no children.

Root history 1030 check may function in certain circum-
stances where additional history may be useful upon the
initial check of the object. In one potential embodiment root
history 1030 may particularly function as a check when the
object is an HTTP 304 response. This type of response is
sent from a server if the client has performed a conditional
GET request and access is allowed, but the object has not
been modified. In such a circumstance, the client may access
the object from cache. In order to begin prefetching more
quickly, the system may check a tracking history associated
with the object upon receipt of the HTTP 304 message. If
tracking history shows the object is a root with prefetchable
children a start root node 1040 may initiate a node for
prefetching the children of the object for the web transaction
that received the HTTP 304 response. If the object is a child
object, the system may simply get the object from cache to
use for rendering the web page.

FIG. 15 shows one additional embodiment of one aspect
of identifying a root, showing a method for logic to deter-
mine a root in accordance with various embodiments of the
present invention. In start 1111, the system initiates logic
function for determining if the object being analyzed is a
root. In such an embodiment, the system may analyze the
object to determine if it is a response from an application
request or a redirected application request, and if the HTTP
response header identifies the response as HTML in root and
HTML file 1113 check.

If these circumstances are confirmed, the system may
check the body of the object for HTML data in HTML data
1114. In HTML data 1114, the object may be pared to
identify the HTML tag near the start of the HTTP response.
If this tag is found, the rest of the object may be scanned for
additional tags such as <title> or <link> tags, or other
parsing may be done to identify prefetching information.
This result may then be passed to start root check 1112a. In
some embodiments, start root check 1112 may be equivalent
to start page 1012 of FIG. 14. In alternative embodiments,
the system of FIG. 15 may function as scan input 1010 of
FIG. 14, and start root check 1112 may function as a call to
an analysis similar to any portion of the system of FIG. 14.
For example, if the scan of HTML data 1114 identifies
information by scanning the file that is sufficient to identify
the object as a root page, the start root check 11112¢ may
include a flag or other information to force the root check to
set the object as a root.

If the result of root & html file 1113 check is that both are
not true, the system may check for exceptions where the
object may still be a root in root & default page 1116. If the
object can be a root due to its status as an application request
or redirected application request, and the URL for the object

25

30

40

45

38

is the default object for a domain, the object may be set as
a root. Further, if the object can be a root, the object has
children, and no active root exists in the system that can be
identified to attach the object to, the object may be set as a
root in children & no active root 1120. The list of active
roots may be maintained by a server or any other such
prefetching system for all root objects of web transactions
currently being handled by the system. If none of the above
analysis determine that the object is a root object, the system
may pass the object off for further analysis in not a root
1150. Alternatively, the system may assume that the object
is not a root and may check a referral tree and the status of
active roots in the system to determine the active root for the
object.

The root maps created by the identification of root and
child objects described in FIGS. 14 and 15 may be keyed by
a ‘title’ of the root page that is synthesized from the URL
string and the title identified by a title tag in HTML of the
object. If no title is found, the URL may be used as the title.
In both circumstances, the title may be clipped to a maxi-
mum number of bytes, such as 100 bytes, to keep the title
and keying of root maps to a reasonable lengths for storage
and tracking purposes. Similarly, if a title is too short, a
longer title may be synthesized from any portion of the
object to create an acceptable key for tracking and database
storage. Such a key may then be used as a key for all tracking
and maps of roots used by a tracking system.

In circumstances where a title string is used, root history
1030, for example, may use the title string to map the key of
the original URL to the keys of new titles created by the
system. Such a mapping may be necessary to handle a 304
response described above, where the object includes an
identifier, but does not include HTML data that may be used
to create the key used by the system. In such embodiments,
every time a title is created, an entry may be added to the
map, where the key is the handle of the original URL and the
payload is the key of the title string that is used in the tracker.
Such a map may be stored persistently using a recency map
configured to have an appropriate number of aliases for the
roots stored in a tracking system. If the URL is used as the
title, such a translator entry may not be needed as responses,
such as a 304 response, will include the URL. When the
translator is used, a 304 response, for example may use the
translator and map to look up whether the system has a
history stored for a root object.

FIG. 10 provides a schematic illustration of one embodi-
ment of a computer system 1400 that can perform the
methods of the invention, as described herein, and/or can
function, for example, as any part of client 305, proxy server
320, or content server 330 in FIG. 3. It should be noted that
FIG. 10 is meant only to provide a generalized illustration of
various components, any or all of which may be utilized, as
appropriate. FIG. 10, therefore, broadly illustrates how
individual system elements may be implemented in a rela-
tively separated or relatively more integrated manner.

The computer system 1400 is shown comprising hardware
elements that can be electrically coupled via a bus 1405 (or
may otherwise be in communication, as appropriate). The
hardware elements can include one or more processors 1410,
including, without limitation, one or more general-purpose
processors and/or one or more special-purpose processors
(such as digital signal processing chips, graphics accelera-
tion chips, and/or the like); one or more input devices 1415,
which can include, without limitation, a mouse, a keyboard,
and/or the like; and one or more output devices 1420, which
can include, without limitation, a display device, a printer,
and/or the like.

US 9,456,050 B1

39

The computer system 1400 may further include (and/or be
in communication with) one or more storage devices 1425,
which can comprise, without limitation, local and/or net-
work accessible storage and/or can include, without limita-
tion, a disk drive, a drive array, an optical storage device, a
solid-state storage device such as a random access memory
(“RAM”) and/or a read-only memory (“ROM”), which can
be programmable, flash-updateable, and/or the like. The
computer system 1400 might also include a communications
subsystem 1430, which can include, without limitation, a
modem, a network card (wireless or wired), an infra-red
communication device, a wireless communication device,
and/or chipset (such as a Bluetooth™ device, an 802.11
device, a WiFi device, a WiMax device, cellular communi-
cation facilities, etc.), and/or the like. The communications
subsystem 1430 may permit data to be exchanged with a
network (such as the network described below, to name one
example), and/or any other devices described herein. In
many embodiments, the computer system 1400 will further
comprise a working memory 1435, which can include a
RAM or ROM device, as described above.

The computer system 1400 also can comprise software
elements, shown as being currently located within the work-
ing memory 1435, including an operating system 1440
and/or other code, such as one or more application programs
1445, which may comprise computer programs of the inven-
tion, and/or may be designed to implement methods of the
invention and/or configure systems of the invention, as
described herein. Merely by way of example, one or more
procedures described with respect to the method(s) dis-
cussed above might be implemented as code and/or instruc-
tions executable by a computer (and/or a processor within a
computer). A set of these instructions and/or code might be
stored on a computer readable storage medium, such as the
storage device(s) 1425 described above. In some cases, the
storage medium might be incorporated within a computer
system, such as the system 1400. In other embodiments, the
storage medium might be separate from a computer system
(i.e., a removable medium, such as a compact disc, etc.),
and/or provided in an installation package, such that the
storage medium can be used to program a general purpose
computer with the instructions/code stored thereon. These
instructions might take the form of executable code, which
is executable by the computer system 1400 and/or might
take the form of source and/or installable code, which, upon
compilation and/or installation on the computer system 1400
(e.g., using any of a variety of generally available compilers,
installation programs, compression/decompression utilities,
etc.), then takes the form of executable code.

It will be apparent to those skilled in the art that substan-
tial variations may be made in accordance with specific
requirements. For example, customized hardware might also
be used, and/or particular elements might be implemented in
hardware, software (including portable software, such as
applets, etc.), or both. Further, connection to other comput-
ing devices such as network input/output devices may be
employed.

In one aspect, the invention employs a computer system
(such as the computer system 1400) to perform methods of
the invention. According to a set of embodiments, some or
all of the procedures of such methods are performed by the
computer system 1400 in response to processor 1410 execut-
ing one or more sequences of one or more instructions
(which might be incorporated into the operating system
1440 and/or other code, such as an application program
1445) contained in the working memory 1435. Such instruc-
tions may be read into the working memory 1435 from

10

15

20

25

30

40

45

40

another machine-readable medium, such as one or more of
the storage device(s) 1425. Merely by way of example,
execution of the sequences of instructions contained in the
working memory 1435 might cause the processor(s) 1410 to
perform one or more procedures of the methods described
herein.

The terms “machine-readable medium” and “computer
readable medium”, as used herein, refer to any medium that
participates in providing data that causes a machine to
operate in a specific fashion. In an embodiment imple-
mented using the computer system 1400, various machine-
readable media might be involved in providing instructions/
code to processor(s) 1410 for execution and/or might be
used to store and/or carry such instructions/code (e.g., as
signals). In many implementations, a computer readable
medium is a physical and/or tangible storage medium. Such
a medium may take many forms, including but not limited
to, non-volatile media, volatile media, and transmission
media. Non-volatile media includes, for example, optical or
magnetic disks, such as the storage device(s) 1425. Volatile
media includes, without limitation, dynamic memory, such
as the working memory 1435. Transmission media includes
coaxial cables, copper wire, and fiber optics, including the
wires that comprise the bus 1405, as well as the various
components of the communications subsystem 1430 (and/or
the media by which the communications subsystem 1430
provides communication with other devices). Hence, trans-
mission media can also take the form of waves (including,
without limitation, radio, acoustic, and/or light waves, such
as those generated during radio-wave and infra-red data
communications).

Common forms of physical and/or tangible computer
readable media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, or any other magnetic
medium, a CD-ROM, any other optical medium, punch-
cards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, an EPROM, a FLASH-EPROM,
any other memory chip or cartridge, a carrier wave as
described hereinafter, or any other medium from which a
computer can read instructions and/or code.

Various forms of machine-readable media may be
involved in carrying one or more sequences of one or more
instructions to the processor(s) 1410 for execution. Merely
by way of example, the instructions may initially be carried
on a magnetic disk and/or optical disc of a remote computer.
A remote computer might load the instructions into its
dynamic memory and send the instructions as signals over a
transmission medium to be received and/or executed by the
computer system 1400. These signals, which might be in the
form of electromagnetic signals, acoustic signals, optical
signals, and/or the like, are all examples of carrier waves on
which instructions can be encoded, in accordance with
various embodiments of the invention.

The communications subsystem 1430 (and/or compo-
nents thereof) generally will receive the signals, and the bus
1405 then might carry the signals (and/or the data, instruc-
tions, etc., carried by the signals) to the working memory
1435, from which the processor(s) 1405 retrieves and
executes the instructions. The instructions received by the
working memory 1435 may optionally be stored on a storage
device 1425 either before or after execution by the
processor(s) 1410.

A set of embodiments comprises systems for implement-
ing staged configurator modeling. In one embodiment,
proxy server 320 and/or client 305 (as shown in FIG. 3) may
be implemented as computer system 1400 in FIG. 10.
Merely by way of example, FIG. 11 illustrates a schematic

US 9,456,050 B1

41

diagram of a system 1500 that can be used in accordance
with one set of embodiments. The system 1500 can include
one or more user computers 1505. The user computers 1505
can be general purpose personal computers (including,
merely by way of example, personal computers and/or
laptop computers running any appropriate flavor of Micro-
soft Corp.’s Windows™ and/or Apple Corp.’s Macintosh™
operating systems) and/or workstation computers running
any of a variety of commercially-available UNIX™ or
UNIX-like operating systems. These user computers 1505
can also have any of a variety of applications, including one
or more applications configured to perform methods of the
invention, as well as one or more office applications, data-
base client and/or server applications, and web browser
applications. Alternatively, the user computers 1505 can be
any other electronic device, such as a thin-client computer,
Internet-enabled mobile telephone, and/or personal digital
assistant (PDA), capable of communicating via a network
(e.g., the network 1510 described below) and/or displaying
and navigating web pages or other types of electronic
documents. Although the exemplary system 1500 is shown
with three user computers 1505, any number of user com-
puters can be supported.

Certain embodiments of the invention operate in a net-
worked environment, which can include a network 1510.
The network 1510 can be any type of network familiar to
those skilled in the art that can support data communications
using any of a variety of commercially-available protocols,
including, without limitation, TCP/IP, SNA, IPX, Apple-
Talk, and the like. Merely by way of example, the network
1510 can be a local area network (“LAN”), including,
without limitation, an Ethernet network, a Token-Ring net-
work and/or the like; a wide-area network (WAN); a virtual
network, including, without limitation, a virtual private
network (“VPN”); the Internet; an intranet; an extranet; a
public switched telephone network (“PSTN™); an infra-red
network; a wireless network, including, without limitation,
a network operating under any of the IEEE 802.11 suite of
protocols, the Bluetooth™ protocol known in the art, and/or
any other wireless protocol; and/or any combination of these
and/or other networks.

Embodiments of the invention can include one or more
server computers 1515. Each of the server computers 1515
may be configured with an operating system, including,
without limitation, any of those discussed above, as well as
any commercially (or freely) available server operating
systems. Each of the servers 1515 may also be running one
or more applications, which can be configured to provide
services to one or more user computers 1505 and/or other
servers 1515.

Merely by way of example, one of the servers 1515 may
be a web server, which can be used, merely by way of
example, to process requests for web pages or other elec-
tronic documents from user computers 1505. The web server
can also run a variety of server applications, including HTTP
servers, FTP servers, CGI servers, database servers, Java™
servers, and the like. In some embodiments of the invention,
the web server may be configured to serve web pages that
can be operated within a web browser on one or more of the
user computers 1505 to perform methods of the invention.

The server computers 1515, in some embodiments, might
include one or more application servers, which can include
one or more applications accessible by a client running on
one or more of the client computers 1505 and/or other
servers 1515. Merely by way of example, the server(s) 1515
can be one or more general purpose computers capable of
executing programs or scripts in response to the user com-

10

15

20

25

30

35

40

45

50

55

60

65

42

puters 1505 and/or other servers 1515, including, without
limitation, web applications (which might, in some cases, be
configured to perform methods of the invention). Merely by
way of example, a web application can be implemented as
one or more scripts or programs written in any suitable
programming language, such as Java™, C, C#™ or C++,
and/or any scripting language, such as Perl, Python, or TCL,
as well as combinations of any programming/scripting lan-
guages. The application server(s) can also include database
servers, including without limitation those commercially
available from Oracle™, Microsofi™, Sybase™, IBM™,
and the like, which can process requests from clients (in-
cluding, depending on the configurator, database clients, API
clients, web browsers, etc.) running on a user computer 1505
and/or another server 1515. In some embodiments, an appli-
cation server can create web pages dynamically for display-
ing the information in accordance with embodiments of the
invention, such as information displayed on web browser
106 in FIG. 1. Data provided by an application server may
be formatted as web pages (comprising HTML, Javascript,
etc., for example) and/or may be forwarded to a user
computer 1505 via a web server (as described above, for
example). Similarly, a web server might receive web page
requests and/or input data from a user computer 1505 and/or
forward the web page requests and/or input data to an
application server. In some cases a web server may be
integrated with an application server.

In accordance with further embodiments, one or more
servers 1515 can function as a file server and/or can include
one or more of the files (e.g., application code, data files,
etc.) necessary to implement methods of the invention
incorporated by an application running on a user computer
1505 and/or another server 1515. Alternatively, as those
skilled in the art will appreciate, a file server can include all
necessary files, allowing such an application to be invoked
remotely by a user computer 1505 and/or server 1515. It
should be noted that the functions described with respect to
various servers herein (e.g., application server, database
server, web server, file server, etc.) can be performed by a
single server and/or a plurality of specialized servers,
depending on implementation-specific needs and param-
eters.

In certain embodiments, the system can include one or
more databases 1520. The location of the database(s) 1520
is discretionary: merely by way of example, a database
15204 might reside on a storage medium local to (and/or
resident in) a server 15154 (and/or a user computer 1505).
Alternatively, a database 15205 can be remote from any or
all of the computers 1505 or servers 1515, so long as the
database 15206 can be in communication (e.g., via the
network 1510) with one or more of these. In a particular set
of embodiments, a database 1520 can reside in a storage-
area network (“SAN”) familiar to those skilled in the art.
(Likewise, any necessary files for performing the functions
attributed to the computers 1505 or servers 1515 can be
stored locally on the respective computer and/or remotely, as
appropriate.) In one set of embodiments, the database 1520
can be a relational database, such as an Oracle™ database,
that is adapted to store, update, and retrieve data in response
to SQL-formatted commands. The database might be con-
trolled and/or maintained by a database server, as described
above, for example.

Multiple non-limiting embodiments are presented which
describe systems and methods for improved prefetching. In
certain embodiments, a system using smart tracking of
parameters in web page transactions is used to improve
prefetching performance. In one potential such embodiment,

US 9,456,050 B1

43

a first web page transaction that includes a first root HTTP
request, a first root HT'TP response, at least one child HTTP
request, and at least one child HTTP response may be
monitored, at a parameter identified in the transaction that
may correlate with the at least one child HTTP request. In a
later web page transaction where the root HTTP request is
different than the root HTTP request for the first web page
transaction, but the later web page transaction contains the
same identified parameter, the parameter is used to predict
that the at least one child HTTP request from the first web
page transaction will be part of the second web page
transaction as well. The at least on child HTTP request may
then be sent as a prefetch request prior to the normal request
for the child HTTP that would occur in a standard web page
transaction without prefetching.

Various systems and methods are described for providing
improved web browsing. Any of the systems and sub-
systems described may be combined in any functioning way
in accordance with various embodiments of the present
innovations, and in accordance with additional portions of
embodiments not described herein that will be apparent to a
person of ordinary skill in the art.

Another alternative embodiment may include a server
computer comprising a processor; a network connection
communicatively coupled to a client computer and a content
server computer; and a computer readable storage medium
having instructions stored thereon for performing a method
of content prefetching comprising: observing with a proxy
server at least a portion of a first web page transaction
comprising: a first root HTTP request from the client com-
puter to the content server computer, and resulting there-
from: a first root HTTP response, at least one child HTTP
request, and at least one child HTTP response; extracting at
least one parameter from the web page transaction; corre-
lating the at least one parameter with the at least one child
HTTP request resulting from the web page transaction;
observing at least a portion of a second web page transaction
comprising a second root HTTP request, wherein the URL
of the second root HTTP request is different from the URL
of the first root HTTP request; extracting the at least one
parameter from the second web page transaction; and pre-
dicting at least one child HTTP request following from the
second root HTTP request by utilizing the correlation or
matching or matching and the at least one parameter
extracted from the second web page transaction; wherein the
first web page transaction results from a single user selec-
tion.

Further embodiments may operate where the URL that the
second root HTTP request resolves to is to the same host
domain server as the first root HT'TP request.

Further embodiments may operate by prefetching the at
least one child URL in response to predicting at least one
child HTTP request following from the second root HTTP
request by utilizing the correlation or matching or matching
and the at least one parameter extracted from the second web
page transaction t.

Further embodiments may operate where predicting at
least one child HTTP request following from the second root
HTTP request by utilizing the correlation or matching or
matching and the at least one parameter extracted from the
second web page transaction comprises analyzing a record
of previous web page transactions that includes a statistical
correlation between the parameter and the at least one child
HTTP request.

Further embodiments may operate where predicting at
least one child HTTP request following from the second root
HTTP request by utilizing the correlation and the at least one

10

15

20

25

30

35

40

45

50

55

60

65

44

parameter extracted from the second web page transaction
comprises analyzing a record of previous web page trans-
actions, identifying a cyclic pattern associated with the at
least one child URL and the parameter.

Further embodiments may operate where prefetching the
at least one child URL and a second child URL associated
with the cyclic pattern.

Further embodiments may operate where observing at
least a portion of a second web page transaction comprising
a second root HTTP request is performed using a second
proxy server

Further embodiments may operate by routing the first web
page request to the proxy server based on a host associated
with the first web page transaction.

An additional non-limiting embodiment may involve a
system, device, or method that functions by observing with
aweb browser plug in module at least a portion of a first web
page transaction comprising: a first root HT'TP request, and
resulting therefrom: a first root HTTP response, at least one
child HTTP request, and at least one child HTTP response;
extracting at least one parameter from the web page trans-
action; correlating the at least one parameter with the at least
one child HTTP request resulting from the web page trans-
action; observing at least a portion of a second web page
transaction comprising a second root HTTP request, wherein
the URL of the second root HTTP request is different from
the URL of the first root HTTP request; extracting the at least
one parameter from the second web page transaction; and
predicting at least one child HTTP request following from
the second root HTTP request by utilizing the correlation
and the at least one parameter extracted from the second web
page transaction; wherein the first web page transaction
results from a single user selection.

An additional non-limiting embodiment may involve a
system, device, or method that functions by observing with
a proxy server at least a portion of a first web page
transaction comprising: a first root HTTP request, and
resulting therefrom: a first root HTTP response, at least one
child HTTP request, and at least one child HTTP response;
identifying at least one parameter of the first root HTTP
request that does not impact the at least on child HTTP
response.

Further embodiments may operate by observing a second
root HTTP request, wherein the second root HTTP request
is different from the first root HTTP request only due to a
value of the at least one parameter; and prefetching the at
least one child HTTP response following the observing of
the second root HTTP request.

Further embodiments may operate where the at least one
parameter is a cookie.

Further embodiments may operate where the at least one
parameter is a URL name value pair.

Further embodiments may operate where the value of the
at least one parameter is random.

Further embodiments may operate where the value of the
at least one parameter is a time based value.

Further embodiments may operate where identifying the
at least one parameter further comprises creating a record of
the first root HTTP request and the at least one child HTTP
response; updating a history database for the first root HT'TP
request based on the record; calculating a statistical prob-
ability that the at least one parameter of the first root HTTP
request does not impact the at least one child HTTP
response; and identifying the at least one parameter based on
the statistical probability.

US 9,456,050 B1

45

Further embodiments may operate where the identifying
of the at least one parameter is based on a threshold for the
statistical probability.

Further embodiments may operate where the threshold
comprises a statistical value and a reliability value.

Further embodiments may operate where the reliability
value is a minimum number of records for the first root
HTTP request.

An additional non-limiting embodiment may involve a
system, device, or method that functions by observing a
collection of fields contained in first HTTP request; identi-
fying a child URL requested as a result of the first HTTP
request; and determining a likelihood that the child URL is
to be requested as a result of a second HTTP request,
wherein the likelihood is based on one or more fields in the
second HTTP request that are associated with one or more
fields of the 1st HTTP request.

Further embodiments may operate by prefetching the
child URL in response to the determining the likelihood that
the child URL is to be requested as a result of the second
HTTP request.

Further embodiments may operate where the likelihood
that the child URL is to be requested as a result of the 2nd
HTTP request is a probability based on statistical data.

An additional non-limiting embodiment may involve a
system, device, or method that functions by observing at
least a portion of a first web page transaction comprising: a
first root HTTP request, and resulting therefrom: a first root
HTTP response, at least one dynamic child HTTP request,
and at least one dynamic child HTTP response; extracting a
value for at least one parameter from the web page trans-
action; correlating the value for the at least one parameter
and the at least one dynamic child HTTP request resulting
from the web page transaction; observing at least a portion
of a second web page transaction comprising a second root
HTTP request, wherein the URL of the second root HTTP
request is different from the URL of the first root HTTP
request; extracting the at least one parameter from the
second web page transaction and the value for the at least
one parameter; and predicting at least one dynamic child
HTTP request following from the second root HTTP request
by utilizing the correlation and the at least one parameter
extracted from the second web page transaction; wherein the
first web page transaction results from a single user selec-
tion.

Further embodiments may operate where the value com-
prises object state information.

Further embodiments may operate where the value com-
prises client state information.

Further embodiments may operate where the value com-
prises server state information.

Further embodiments may operate where predicting at
least one dynamic child HTTP request resulting from the
second root HTTP request comprises: analyzing a plurality
of server state information comprising the server state
information from the at least one parameter; and prefetching
the at least one child HTTP request based on the plurality of
server state information.

Further embodiments may operate by extracting the at
least one parameter from the second web page transaction
and the value for the at least one parameter; and

Further embodiments may operate where the value is
generated by a formula and wherein determining the asso-
ciation between the value and the at least one dynamic child
comprises determining that the formula is used to create the
dynamic child.

10

15

20

25

30

35

40

45

50

55

60

65

46

Further embodiments may operate where the parameter is
a random function.

Further embodiments may operate where the at least one
parameter is associated with a cycle of URLs.

An additional non-limiting embodiment may involve a
system, device, or method that functions by observing at
least a portion of a first web page transaction comprising: a
first root HTTP request, and resulting therefrom: a first root
HTTP response, at least one dynamic child HTTP request,
and at least one dynamic child HTTP response; extracting a
value for at least one parameter from the web page trans-
action; correlating the value for the at least one parameter
and the at least one dynamic child HTTP response resulting
from the web page transaction; observing at least a portion
of a second web page transaction comprising a second root
HTTP request, wherein the URL of the second root HTTP
request is different from the URL of the first root HTTP
request; extracting the at least one parameter from the
second web page transaction and the value for the at least
one parameter; and predicting at least one dynamic child
HTTP response following from the second root HTTP
request by utilizing the correlation and the at least one
parameter extracted from the second web page transaction;
wherein the first web page transaction results from a single
user selection.

Further embodiments may operate by performing a
prefetch operation based on the predicting of the at least one
dynamic child HTTP response following from the second
root HTTP request.

Further embodiments may operate where a URL of the at
least on child HTTP request following from the second root
HTTP request is different from each URL of every child
HTTP request of the first web page transaction

In one potential non-limiting embodiment, a system,
device, or method may function for observing with a proxy
server at least a portion of a first web page transaction
comprising: a first root HT'TP request, and resulting there-
from a first root HTTP response, at least one child HTTP
request, and at least one child HTTP response; extracting at
least one parameter from the web page transaction; corre-
lating the at least one parameter with the at least one child
HTTP request resulting from the web page transaction;
observing at least a portion of a second web page transaction
comprising a second root HTTP request, wherein the URL
of the second root HTTP request is different from the URL
of the first root HTTP request; extracting the at least one
parameter from the second web page transaction; and pre-
dicting at least one child HTTP request following from the
second root HTTP request by utilizing the correlation and
the at least one parameter extracted from the second web
page transaction; wherein the first web page transaction
results from a single user selection.

Additional embodiment may further involve extracting a
second parameter from the web page transaction; identifying
the second parameter as inconsequential; and extracting the
second parameter from the second web page transaction;
wherein predicting the at least one child HTTP request
following from the second root HTTP request is further
based on the inconsequentiality of the second parameter.

Additional embodiment may further involve prefetching
the at least one child HTTP request following from the
second root HTTP request; receiving, from a client com-
puter, a request for the at least one child HTTP; communi-
cating the request for the at least one child HTTP to a content
server transmitting the prefeched at least one child HTTP to
the client computer in response to the request for the at least

US 9,456,050 B1

47

one child HTTP and prior to receiving a response to com-
municating the request to the content server.

Additional embodiment may further involve extracting a
plurality of parameters from a plurality of web page trans-
action; wherein correlating the at least one parameter with
the at least one child HTTP request resulting from the web
page transaction occurs as part of a batch analysis of the
plurality of web page transactions.

Further embodiments may operate where the batch analy-
sis of the plurality of web page transactions is performed by
a prefetch analysis server that is separate from the proxy
server.

Further embodiments may operate where the URL that the
second root HTTP request resolves to is to the same host
domain server as the first root HT'TP request.

Further embodiments may operate by prefetching the at
least one child URL in response to predicting at least one
child HTTP request following from the second root HTTP
request by utilizing the correlation and the at least one
parameter extracted from the second web page transaction.

Further embodiments may operate where predicting at
least one child HTTP request following from the second root
HTTP request by utilizing the correlation and the at least one
parameter extracted from the second web page transaction
comprises analyzing a record of previous web page trans-
actions that includes a statistical correlation between the
parameter and the at least one child HTTP request.

Further embodiments may operate where predicting at
least one child HTTP request following from the second root
HTTP request by utilizing the correlation and the at least one
parameter extracted from the second web page transaction
comprises analyzing a record of previous web page trans-
actions, identifying a cyclic pattern associated with the at
least one child URL and the parameter.

Further embodiments may operate by prefetching the at
least one child URL and a second child URL associated with
the cyclic pattern.

Further embodiments may operate where observing at
least a portion of a second web page transaction comprising
a second root HTTP request is performed using a second
proxy server

Further embodiments may operate by routing the first web
page request to the proxy server based on a host associated
with the first web page transaction.

Further embodiments may operate where the at least one
child HTTP request following from the second root HTTP
request has the same URL as the at least one child HTTP
request of the first web page transaction.

Further embodiments may operate where predicting at
least on child HTTP request following from the second root
HTTP request further comprises scanning, using a scanning
module, a set of transaction data to identify a value for a
dynamic portion of the at least one child HTTP request
following from the second root HTTP request; and prefetch-
ing the at least on child HTTP request following from the
second root HTTP using the dynamic portion identified from
the set of transaction data.

Further embodiments may operate where the set of trans-
action data comprises user specific data or client computer
configuration data.

Further embodiments may operate where the parameter is
a dynamic parameter.

An additional non-limiting embodiment may involve a
system, device, or method that functions by scanning the
object to determine a data type of the object; creating a title
for the object; scanning the object to determine if the object

10

15

20

25

30

35

40

45

50

55

60

65

48

is a root object; checking a tracking history for the object;
and setting a system status for the object as either a root
object or a child object.

Further embodiments may operate where a key is set for
the title in a tracking system.

Further embodiments may operate by checking the key on
the initial scan of the object, and checking the tracking
history of the object for the key; wherein setting the system
status comprises finding an object status from the tracking
history using the key.

Further embodiments may operate where the object is an
HTTP 304 response indicating a cached version of the object
is fresh.

While the invention has been described with respect to
exemplary embodiments, one skilled in the art will recog-
nize that numerous modifications are possible. For example,
the methods and processes described herein may be imple-
mented using hardware components, software components,
and/or any combination thereof. Further, while various
methods and processes described herein may be described
with respect to particular structural and/or functional com-
ponents for ease of description, methods of the invention are
not limited to any particular structural and/or functional
architecture but instead can be implemented on any suitable
hardware, firmware, and/or software configurator. Similarly,
while various functionalities are ascribed to certain system
components, unless the context dictates otherwise, this func-
tionality can be distributed among various other system
components in accordance with different embodiments of
the invention.

Moreover, while the procedures comprised in the methods
and processes described herein are described in a particular
order for ease of description, unless the context dictates
otherwise, various procedures may be reordered, added,
and/or omitted in accordance with various embodiments of
the invention. Moreover, the procedures described with
respect to one method or process may be incorporated within
other described methods or processes; likewise, system
components described according to a particular structural
architecture and/or with respect to one system may be
organized in alternative structural architectures and/or incor-
porated within other described systems. Hence, while vari-
ous embodiments are described with—or without—certain
features for ease of description and to illustrate exemplary
features, the various components and/or features described
herein with respect to a particular embodiment can be
substituted, added, and/or subtracted from among other
described embodiments, unless the context dictates other-
wise. Consequently, although the invention has been
described with respect to exemplary embodiments, it will be
appreciated that the invention is intended to cover all
modifications and equivalents within the scope of the fol-
lowing claims

What is claimed is:
1. A method comprising:
observing at least a portion of a first web page transaction
comprising:
a first root HTTP request, and resulting therefrom:
a first root HTTP response,
at least one child HTTP request, and
at least one child HTTP response;
extracting at least one parameter from the first web page
transaction;
matching the at least one parameter with the at least one
child HTTP request resulting from the first web page
transaction;

US 9,456,050 B1

49

observing at least a portion of a second web page trans-
action comprising a second root HT'TP request, wherein
a URL of the second root HTTP request is different
from the URL of the first root HTTP request;

extracting the at least one parameter from the second web
page transaction;

predicting at least one child HTTP request resulting from

the second root HTTP request by utilizing the matching
and the at least one parameter extracted from the
second web page transaction; and

responsive to predicting the at least one child HTTP

request, prefetching an object of at least one of the
predicted child HTTP requests resulting from the sec-
ond root HTTP request;

wherein the first web page transaction results from a

single user selection.

2. The method of claim 1 further comprising:

extracting a second parameter from the first web page

transaction;

identifying the second parameter as inconsequential; and

extracting the second parameter from the second web

page transaction;

wherein predicting the at least one child HTTP request

resulting from the second root HTTP request is further
based on the inconsequentiality of the second param-
eter.
3. The method of claim 1 further comprising:
receiving, from a client computer, a request for the object
of'the at least one of the predicted child HTTP requests;

communicating the request for the object of the at least
one predicted child HTTP request to a content server;
and

transmitting the prefetched object of the predicted child

HTTP request to the client computer in response to the
request for the at least one child HTTP request and
prior to receiving a response to communicating the
request to the content server.

4. The method of claim 1 further comprising extracting a
plurality of parameters from a plurality of web page trans-
actions;

wherein matching the at least one parameter with the at

least one child HTTP request resulting from the first
web page transaction occurs as part of a batch analysis
of the plurality of web page transactions.

5. The method of claim 4 wherein the batch analysis of the
plurality of web page transactions is performed by a prefetch
analysis server.

6. The method of claim 1 wherein the URL that the second
root HT'TP request resolves to is to the same host domain
server as the first root HTTP request.

7. The method of claim 1 wherein predicting at least one
child HTTP request resulting from the second root HTTP
request by utilizing the matching and the at least one
parameter extracted from the second web page transaction
comprises analyzing a record of previous web page trans-
actions that includes a statistical correlation between the at
least one parameter and the at least one child HTTP request.

8. The method of claim 1 wherein predicting at least one
child HTTP request resulting from the second root HTTP
request by utilizing the matching and the at least one
parameter extracted from the second web page transaction
comprises analyzing a record of previous web page trans-
actions, identifying a cyclic pattern associated with the at
least one child request and the at least one parameter.

9. The method of claim 8 further comprising prefetching
the object of the at least one predicted child request and a
second child request associated with the cyclic pattern.

10

15

20

25

30

35

40

45

50

55

60

65

50

10. The method of claim 1 wherein observing at least a
portion of a second web page transaction comprising a
second root HTTP request is performed using a proxy server.

11. The method of claim 1 further comprising, routing the
first root HTTP request to a proxy server based on a host
associated with the first web page transaction.

12. The method of claim 1 wherein the at least one child
HTTP request resulting from the second root HTTP request
has the same URL as the at least one child HTTP request of
the first web page transaction.

13. The method of claim 1 wherein predicting at least one
child HTTP request resulting from the second root HTTP
request further comprises scanning, using a scanning mod-
ule, a set of transaction data to identify a value for a dynamic
portion of the at least one child HTTP request resulting from
the second root HTTP request; and

prefetching the object of the at least one predicted child

HTTP request resulting from the second root HTTP
request using the dynamic portion identified from the
set of transaction data.

14. The method of claim 13 wherein the set of transaction
data comprises user specific data or client computer con-
figuration data.

15. A server computer comprising:

a processor;

a network connection communicatively coupled to a

client computer and a content server computer; and

a computer readable storage medium having instructions

stored thereon configured to cause the processor to:
observe at least a portion of a first web page transaction
comprising:
a first root HTTP request from the client computer to
the content server computer, and resulting therefrom:
a first root HTTP response,
at least one child HTTP request, and
at least one child HTTP response;

extract at least one parameter from the first web page

transaction;

correlate the at least one parameter with the at least one

child HTTP request resulting from the first web page
transaction;

observe at least a portion of a second web page transaction

comprising a second root HTTP request, wherein a
URL of the second root HTTP request is different from
the URL of the first root HT'TP request;

extract the at least one parameter from the second web

page transaction; and

predict at least one child HT'TP request resulting from the

second root HTTP request by utilizing the matching
and the at least one parameter extracted from the
second web page transaction; and

responsive to a prediction of the at least one child HTTP

request, prefetch an object of the at least one predicted
child HTTP requests resulting from the second root
HTTP request;

wherein the first web page transaction results from a

single user selection.

16. The server computer of claim 15 wherein the URL that
the second root HTTP request resolves to is to the same host
domain server as the first root HT'TP request.

17. The server computer of claim 15 wherein the com-
puter readable storage medium further comprises instruc-
tions to cause the processor to:

receive, from a client computer, a request for the object of

the at least one predicted child HTTP requests;

US 9,456,050 B1

51

communicate the request for the at least one child HTTP

to a content server; and

transmit the prefetched object of the at least one predicted

child HTTP to the client computer in response to the
request for the object of the at least one child HTTP
requests and prior to receiving a response to commu-
nicating the request to the content server.

18. A method comprising:

observing at least a portion of a first web page transaction

comprising:
a first root HTTP request, and resulting therefrom:
a first root HTTP response,
at least one dynamic child HTTP request, and
at least one dynamic child HTTP response;
extracting a value for at least one parameter from the first
web page transaction;
determining an association between the value for the at
least one parameter and the at least one dynamic child
HTTP request resulting from the first web page trans-
action;
observing at least a portion of a second web page trans-
action comprising a second root HT'TP request, wherein
the URL of the second root HTTP request is different
from the URL of the first root HTTP request; and

predicting at least one dynamic child HTTP request
resulting from the second root HTTP request by utiliz-
ing the association and the at least one parameter; and

responsive to predicting the at least one dynamic child
HTTP request, prefetching an object of at least one of
the predicted dynamic child HTTP requests resulting
from the second root HTTP request;

wherein the first web page transaction results from a

single user selection.

19. The method of claim 18 wherein the value comprises
server state information.

20. The method of claim 19 wherein predicting at least
one dynamic child HTTP request resulting from the second
root HTTP request comprises:

analyzing a plurality of server state information compris-

ing the server state information from the at least one
parameter; and

prefetching the object of the at least one predicted

dynamic child HTTP requests based on the plurality of
server state information.

21. The method of claim 18 wherein the value is generated
by a formula and wherein determining the association
between the value and the at least one dynamic child HTTP
request comprises determining that the formula is used to
create the dynamic child HTTP request.

15

45

52

22. A server computer comprising:

a processor;

a network connection communicatively coupled to a

client computer and a content server computer; and

a computer readable storage medium having instructions

stored thereon configured to cause the processor to:

observe at least a portion of a first web page transaction
comprising:
a first root HTTP request, and resulting therefrom:
a first root HTTP response,
at least one dynamic child HTTP request, and
at least one dynamic child HTTP response;

extract a value for at least one parameter from the first
web page transaction;

determine an association between the value for the at
least one parameter and the at least one dynamic
child HTTP request resulting from the first web page
transaction;

observe at least a portion of a second web page trans-
action comprising a second root HTTP request,
wherein a URL of the second root HTTP request is
different from the URL of the first root HTTP
request; and

predict at least one dynamic child HTTP request result-
ing from the second root HTTP request by utilizing
the association and the at least one parameter; and

responsive to a prediction the at least one dynamic
child HTTP request, prefetch an object of at least one
of' the predicted dynamic child HT TP requests result-
ing from the second root HTTP request;

wherein the first web page transaction results from a
single user selection.

23. The server of claim 22 wherein the value comprises
server state information.

24. The server of claim 23 wherein the instructions are
further configured to cause the processor to:

analyze a plurality of server state information comprising

the server state information from the at least one
parameter; and

prefetch the object of the at least one predicted dynamic

child HTTP requests based on the plurality of server
state information,

to predict the at least one dynamic child HTTP request

resulting from the second root HTTP request com-
prises.

25. The server of claim 22 wherein the value is generated
by a formula and wherein the instructions are further con-
figured to cause the processor to determine that the formula
is used to create the dynamic child HTTP request to deter-
mine the association between the value and the at least one
dynamic child HTTP request.

#* #* #* #* #*

